![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exancom | Structured version Visualization version GIF version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | exbii 1843 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 |
This theorem is referenced by: 19.42v 1950 19.42 2225 eupickb 2627 datisi 2671 disamis 2672 dimatis 2679 fresison 2680 bamalip 2683 risset 3227 morex 3714 pwpw0 4817 dfuni2 4910 eluni2 4912 uniprOLD 4926 dfiun2gOLD 5034 cnvco 5888 imadif 6637 uniuni 7764 pceu 16814 gsumval3eu 19858 isch3 31050 tgoldbachgt 34295 bnj1109 34417 bnj1304 34450 bnj849 34556 funpartlem 35538 bj-19.41t 36251 bj-elsngl 36447 bj-ccinftydisj 36692 mopickr 37835 moantr 37836 brcosscnvcoss 37906 rr-groth 43736 rr-grothshortbi 43740 eluni2f 44469 ssfiunibd 44691 setrec1lem3 48120 |
Copyright terms: Public domain | W3C validator |