![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsb3 | Structured version Visualization version GIF version |
Description: Substitution in an equality. (Contributed by Raph Levien and FL, 4-Dec-2005.) Reduce axiom usage. (Revised by Wolf Lammen, 23-Jul-2023.) |
Ref | Expression |
---|---|
equsb3 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 2021 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 = 𝑧 ↔ 𝑤 = 𝑧)) | |
2 | equequ1 2021 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
3 | 1, 2 | sbievw2 2092 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 |
This theorem is referenced by: equsb1v 2096 mo3 2554 sb8eulem 2588 sb8iota 6512 mo5f 32300 mptsnunlem 36817 wl-equsb3 37023 wl-mo3t 37043 wl-sb8eut 37045 wl-sb8eutv 37046 frege55lem1b 43325 sbeqal1 43835 icheq 46802 |
Copyright terms: Public domain | W3C validator |