![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 24-Oct-2024.) |
Ref | Expression |
---|---|
eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2731 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpa 476 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2719 |
This theorem is referenced by: eqvincg 3632 reusv3i 5398 moop2 5498 relopabi 5818 relop 5847 f0rn0 6776 fliftfun 7314 soseq 8158 addlsub 11652 wrd2ind 14697 fsum2dlem 15740 fprodser 15917 0dvds 16245 cncongr1 16629 4sqlem12 16916 cshwshashlem1 17056 catideu 17646 pj1eu 19642 lspsneu 21000 1marepvmarrepid 22464 mdetunilem6 22506 qtopeu 23607 qtophmeo 23708 dscmet 24468 isosctrlem2 26738 ppiub 27124 sltsolem1 27595 nolt02o 27615 nogt01o 27616 axcgrtr 28713 axeuclid 28761 axcontlem2 28763 uhgr2edg 29008 usgredgreu 29018 uspgredg2vtxeu 29020 wlkon2n0 29467 spthonepeq 29553 usgr2wlkneq 29557 2pthon3v 29741 umgr2adedgspth 29746 clwwlknondisj 29908 frgr2wwlkeqm 30128 2wspmdisj 30134 ajmoi 30655 chocunii 31098 3oalem2 31460 adjmo 31629 cdjreui 32229 eqtrb 32258 probun 33975 bnj551 34309 satfv0fun 34917 satffunlem 34947 satffunlem1lem1 34948 satffunlem2lem1 34950 btwnswapid 35549 bj-snsetex 36378 bj-bary1lem1 36726 poimirlem4 37032 exidu1 37264 rngoideu 37311 mapdpglem31 41113 remul01 41884 frege55b 43250 frege55c 43271 cncfiooicclem1 45204 euoreqb 46412 isuspgrim0lem 47092 aacllem 48157 |
Copyright terms: Public domain | W3C validator |