MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrtrrdi Structured version   Visualization version   GIF version

Theorem eqbrtrrdi 5183
Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqbrtrrdi.1 (𝜑𝐵 = 𝐴)
eqbrtrrdi.2 𝐵𝑅𝐶
Assertion
Ref Expression
eqbrtrrdi (𝜑𝐴𝑅𝐶)

Proof of Theorem eqbrtrrdi
StepHypRef Expression
1 eqbrtrrdi.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2734 . 2 (𝜑𝐴 = 𝐵)
3 eqbrtrrdi.2 . 2 𝐵𝑅𝐶
42, 3eqbrtrdi 5182 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534   class class class wbr 5143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144
This theorem is referenced by:  grur1  10838  t1connperf  23334  basellem9  27015  sqff1o  27108  ballotlemic  34121  ballotlem1c  34122  pibt2  36891
  Copyright terms: Public domain W3C validator