![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltskm | Structured version Visualization version GIF version |
Description: Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
Ref | Expression |
---|---|
eltskm | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tskmval 10854 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | |
2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ 𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥})) |
3 | elex 3488 | . . . 4 ⊢ (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} → 𝐵 ∈ V)) |
5 | tskmid 10855 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | |
6 | tskmcl 10856 | . . . . . 6 ⊢ (tarskiMap‘𝐴) ∈ Tarski | |
7 | eleq2 2817 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ (tarskiMap‘𝐴))) | |
8 | eleq2 2817 | . . . . . . . 8 ⊢ (𝑥 = (tarskiMap‘𝐴) → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ (tarskiMap‘𝐴))) | |
9 | 7, 8 | imbi12d 344 | . . . . . . 7 ⊢ (𝑥 = (tarskiMap‘𝐴) → ((𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) ↔ (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
10 | 9 | rspcv 3603 | . . . . . 6 ⊢ ((tarskiMap‘𝐴) ∈ Tarski → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴)))) |
11 | 6, 10 | ax-mp 5 | . . . . 5 ⊢ (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → (𝐴 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ (tarskiMap‘𝐴))) |
12 | 5, 11 | syl5com 31 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ (tarskiMap‘𝐴))) |
13 | elex 3488 | . . . 4 ⊢ (𝐵 ∈ (tarskiMap‘𝐴) → 𝐵 ∈ V) | |
14 | 12, 13 | syl6 35 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥) → 𝐵 ∈ V)) |
15 | elintrabg 4959 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ V → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥)))) |
17 | 4, 14, 16 | pm5.21ndd 379 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
18 | 2, 17 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 Vcvv 3469 ∩ cint 4944 ‘cfv 6542 Tarskictsk 10763 tarskiMapctskm 10852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-groth 10838 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8718 df-en 8956 df-dom 8957 df-tsk 10764 df-tskm 10853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |