Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmptf Structured version   Visualization version   GIF version

Theorem elrnmptf 44477
Description: The range of a function in maps-to notation. Same as elrnmpt 5952, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmptf.1 𝑥𝐶
elrnmptf.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmptf (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))

Proof of Theorem elrnmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elrnmptf.1 . . . 4 𝑥𝐶
21nfeq2 2915 . . 3 𝑥 𝑦 = 𝐶
3 eqeq1 2731 . . 3 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
42, 3rexbid 3266 . 2 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
5 elrnmptf.2 . . 3 𝐹 = (𝑥𝐴𝐵)
65rnmpt 5951 . 2 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
74, 6elab2g 3667 1 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wnfc 2878  wrex 3065  cmpt 5225  ran crn 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-mpt 5226  df-cnv 5680  df-dm 5682  df-rn 5683
This theorem is referenced by:  elrnmpt1sf  44485
  Copyright terms: Public domain W3C validator