![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpred | Structured version Visualization version GIF version |
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
elpred.1 | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
elpred | ⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpred.1 | . 2 ⊢ 𝑌 ∈ V | |
2 | elpredgg 6313 | . 2 ⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ V) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 Vcvv 3470 class class class wbr 5143 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-xp 5679 df-cnv 5681 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 |
This theorem is referenced by: predtrss 6323 setlikespec 6326 preddowncl 6333 xpord2pred 8145 xpord3pred 8152 fprlem2 8301 wfrlem10OLD 8333 ttrclselem2 9744 ttrclse 9745 preduz 13650 predfz 13653 wzel 35415 wsuclem 35416 |
Copyright terms: Public domain | W3C validator |