MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpred Structured version   Visualization version   GIF version

Theorem elpred 6317
Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.) (Proof shortened by BJ, 16-Oct-2024.)
Hypothesis
Ref Expression
elpred.1 𝑌 ∈ V
Assertion
Ref Expression
elpred (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))

Proof of Theorem elpred
StepHypRef Expression
1 elpred.1 . 2 𝑌 ∈ V
2 elpredgg 6313 . 2 ((𝑋𝐷𝑌 ∈ V) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
31, 2mpan2 690 1 (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  Vcvv 3470   class class class wbr 5143  Predcpred 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-xp 5679  df-cnv 5681  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300
This theorem is referenced by:  predtrss  6323  setlikespec  6326  preddowncl  6333  xpord2pred  8145  xpord3pred  8152  fprlem2  8301  wfrlem10OLD  8333  ttrclselem2  9744  ttrclse  9745  preduz  13650  predfz  13653  wzel  35415  wsuclem  35416
  Copyright terms: Public domain W3C validator