![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpqn | Structured version Visualization version GIF version |
Description: Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpqn | ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq 10941 | . . 3 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
2 | 1 | ssrab3 4078 | . 2 ⊢ Q ⊆ (N × N) |
3 | 2 | sseli 3976 | 1 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ∀wral 3057 class class class wbr 5150 × cxp 5678 ‘cfv 6551 2nd c2nd 7996 Ncnpi 10873 <N clti 10876 ~Q ceq 10880 Qcnq 10881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3429 df-v 3473 df-in 3954 df-ss 3964 df-nq 10941 |
This theorem is referenced by: nqereu 10958 nqerid 10962 enqeq 10963 addpqnq 10967 mulpqnq 10970 ordpinq 10972 addclnq 10974 mulclnq 10976 addnqf 10977 mulnqf 10978 adderpq 10985 mulerpq 10986 addassnq 10987 mulassnq 10988 distrnq 10990 mulidnq 10992 recmulnq 10993 ltsonq 10998 lterpq 10999 ltanq 11000 ltmnq 11001 ltexnq 11004 archnq 11009 wuncn 11199 |
Copyright terms: Public domain | W3C validator |