MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimhyp Structured version   Visualization version   GIF version

Theorem elimhyp 4590
Description: Eliminate a hypothesis containing class variable 𝐴 when it is known for a specific class 𝐵. For more information, see comments in dedth 4583. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
elimhyp.1 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑𝜓))
elimhyp.2 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜓))
elimhyp.3 𝜒
Assertion
Ref Expression
elimhyp 𝜓

Proof of Theorem elimhyp
StepHypRef Expression
1 iftrue 4531 . . . . 5 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21eqcomd 2734 . . . 4 (𝜑𝐴 = if(𝜑, 𝐴, 𝐵))
3 elimhyp.1 . . . 4 (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜑𝜓))
42, 3syl 17 . . 3 (𝜑 → (𝜑𝜓))
54ibi 267 . 2 (𝜑𝜓)
6 elimhyp.3 . . 3 𝜒
7 iffalse 4534 . . . . 5 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
87eqcomd 2734 . . . 4 𝜑𝐵 = if(𝜑, 𝐴, 𝐵))
9 elimhyp.2 . . . 4 (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜓))
108, 9syl 17 . . 3 𝜑 → (𝜒𝜓))
116, 10mpbii 232 . 2 𝜑𝜓)
125, 11pm2.61i 182 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1534  ifcif 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-if 4526
This theorem is referenced by:  elimel  4594  elimf  6716  oeoa  8612  oeoe  8614  limensuc  9173  axcc4dom  10459  elimne0  11229  elimgt0  12077  elimge0  12078  2ndcdisj  23354  siilem2  30656  normlem7tALT  30923  hhsssh  31073  shintcl  31134  chintcl  31136  spanun  31349  elunop2  31817  lnophm  31823  nmbdfnlb  31854  hmopidmch  31957  hmopidmpj  31958  chirred  32199  limsucncmp  35925  elimhyps  38428  elimhyps2  38431
  Copyright terms: Public domain W3C validator