![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleccossin | Structured version Visualization version GIF version |
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
Ref | Expression |
---|---|
eleccossin | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3961 | . . 3 ⊢ (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐵 ∈ [𝐴] ≀ 𝑅 ∧ 𝐵 ∈ [𝐶] ≀ 𝑅)) | |
2 | relcoss 37889 | . . . . 5 ⊢ Rel ≀ 𝑅 | |
3 | relelec 8764 | . . . . 5 ⊢ (Rel ≀ 𝑅 → (𝐵 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐵)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐵) |
5 | relelec 8764 | . . . . 5 ⊢ (Rel ≀ 𝑅 → (𝐵 ∈ [𝐶] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅𝐵)) | |
6 | 2, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ [𝐶] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅𝐵) |
7 | 4, 6 | anbi12i 627 | . . 3 ⊢ ((𝐵 ∈ [𝐴] ≀ 𝑅 ∧ 𝐵 ∈ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵)) |
8 | 1, 7 | bitri 275 | . 2 ⊢ (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵)) |
9 | brcosscnvcoss 37900 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ 𝑅𝐶 ↔ 𝐶 ≀ 𝑅𝐵)) | |
10 | 9 | anbi2d 629 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵))) |
11 | 8, 10 | bitr4id 290 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∩ cin 3944 class class class wbr 5142 Rel wrel 5677 [cec 8716 ≀ ccoss 37642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ec 8720 df-coss 37877 |
This theorem is referenced by: trcoss2 37950 |
Copyright terms: Public domain | W3C validator |