Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleccossin Structured version   Visualization version   GIF version

Theorem eleccossin 37949
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.)
Assertion
Ref Expression
eleccossin ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))

Proof of Theorem eleccossin
StepHypRef Expression
1 elin 3961 . . 3 (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐵 ∈ [𝐴] ≀ 𝑅𝐵 ∈ [𝐶] ≀ 𝑅))
2 relcoss 37889 . . . . 5 Rel ≀ 𝑅
3 relelec 8764 . . . . 5 (Rel ≀ 𝑅 → (𝐵 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝐵))
42, 3ax-mp 5 . . . 4 (𝐵 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝐵)
5 relelec 8764 . . . . 5 (Rel ≀ 𝑅 → (𝐵 ∈ [𝐶] ≀ 𝑅𝐶𝑅𝐵))
62, 5ax-mp 5 . . . 4 (𝐵 ∈ [𝐶] ≀ 𝑅𝐶𝑅𝐵)
74, 6anbi12i 627 . . 3 ((𝐵 ∈ [𝐴] ≀ 𝑅𝐵 ∈ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵))
81, 7bitri 275 . 2 (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵))
9 brcosscnvcoss 37900 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵𝑅𝐶𝐶𝑅𝐵))
109anbi2d 629 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐴𝑅𝐵𝐵𝑅𝐶) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵)))
118, 10bitr4id 290 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  cin 3944   class class class wbr 5142  Rel wrel 5677  [cec 8716  ccoss 37642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ec 8720  df-coss 37877
This theorem is referenced by:  trcoss2  37950
  Copyright terms: Public domain W3C validator