![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs2 | Structured version Visualization version GIF version |
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
eldisjs2 | ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldisjs 38194 | . 2 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | |
2 | cosselcnvrefrels2 38010 | . . . 4 ⊢ ( ≀ ◡𝑅 ∈ CnvRefRels ↔ ( ≀ ◡𝑅 ⊆ I ∧ ≀ ◡𝑅 ∈ Rels )) | |
3 | cosscnvelrels 37969 | . . . . 5 ⊢ (𝑅 ∈ Rels → ≀ ◡𝑅 ∈ Rels ) | |
4 | 3 | biantrud 531 | . . . 4 ⊢ (𝑅 ∈ Rels → ( ≀ ◡𝑅 ⊆ I ↔ ( ≀ ◡𝑅 ⊆ I ∧ ≀ ◡𝑅 ∈ Rels ))) |
5 | 2, 4 | bitr4id 290 | . . 3 ⊢ (𝑅 ∈ Rels → ( ≀ ◡𝑅 ∈ CnvRefRels ↔ ≀ ◡𝑅 ⊆ I )) |
6 | 5 | pm5.32ri 575 | . 2 ⊢ (( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) |
7 | 1, 6 | bitri 275 | 1 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ⊆ wss 3947 I cid 5575 ◡ccnv 5677 ≀ ccoss 37648 Rels crels 37650 CnvRefRels ccnvrefrels 37656 Disjs cdisjs 37681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-coss 37883 df-rels 37957 df-ssr 37970 df-cnvrefs 37997 df-cnvrefrels 37998 df-disjss 38175 df-disjs 38176 |
This theorem is referenced by: eldisjs3 38196 eldisjs4 38197 eldisjs5 38198 |
Copyright terms: Public domain | W3C validator |