Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjn0elb Structured version   Visualization version   GIF version

Theorem eldisjn0elb 38217
Description: Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
eldisjn0elb (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))

Proof of Theorem eldisjn0elb
StepHypRef Expression
1 df-eldisj 38179 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 n0el3 38123 . 2 (¬ ∅ ∈ 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
31, 2anbi12i 627 1 (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj ( E ↾ 𝐴) ∧ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1534  wcel 2099  c0 4323   E cep 5581  ccnv 5677  dom cdm 5678  cres 5680   / cqs 8724   Disj wdisjALTV 37682   ElDisj weldisj 37684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-eprel 5582  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ec 8727  df-qs 8731  df-eldisj 38179
This theorem is referenced by:  mpet3  38308  cpet2  38309
  Copyright terms: Public domain W3C validator