![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ela | Structured version Visualization version GIF version |
Description: Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ela | ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5146 | . 2 ⊢ (𝑥 = 𝐴 → (0ℋ ⋖ℋ 𝑥 ↔ 0ℋ ⋖ℋ 𝐴)) | |
2 | df-at 32135 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
3 | 1, 2 | elrab2 3683 | 1 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2099 class class class wbr 5142 Cℋ cch 30726 0ℋc0h 30732 ⋖ℋ ccv 30761 HAtomscat 30762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-at 32135 |
This theorem is referenced by: elat2 32137 elatcv0 32138 atcv0 32139 |
Copyright terms: Public domain | W3C validator |