![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
5 | 1, 1, 2, 4 | e111 44085 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 43980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 43981 |
This theorem is referenced by: e11an 44100 e01 44102 e10 44105 elex2VD 44249 elex22VD 44250 eqsbc2VD 44251 tpid3gVD 44253 3ornot23VD 44258 orbi1rVD 44259 3orbi123VD 44261 sbc3orgVD 44262 ordelordALTVD 44278 sbcim2gVD 44286 trsbcVD 44288 undif3VD 44293 sbcssgVD 44294 csbingVD 44295 onfrALTVD 44302 csbeq2gVD 44303 csbsngVD 44304 csbxpgVD 44305 csbresgVD 44306 csbrngVD 44307 csbima12gALTVD 44308 csbunigVD 44309 csbfv12gALTVD 44310 19.41rgVD 44313 2pm13.193VD 44314 hbimpgVD 44315 ax6e2eqVD 44318 2uasbanhVD 44322 notnotrALTVD 44326 |
Copyright terms: Public domain | W3C validator |