Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dynkin Structured version   Visualization version   GIF version

Theorem dynkin 33791
Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
dynkin.1 (𝜑𝑆𝐿)
dynkin.2 (𝜑𝑇𝑃)
dynkin.3 (𝜑𝑇𝑆)
Assertion
Ref Expression
dynkin (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ 𝑆)
Distinct variable groups:   𝑥,𝑠,𝑦,𝐿   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦   𝐿,𝑠,𝑢,𝑥   𝑢,𝑂   𝑇,𝑠,𝑢,𝑥   𝜑,𝑥   𝑦,𝑂   𝑦,𝑇   𝑥,𝑉   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑢,𝑠)   𝑃(𝑢,𝑠)   𝑆(𝑥,𝑦,𝑢,𝑠)   𝑉(𝑦,𝑢,𝑠)

Proof of Theorem dynkin
Dummy variables 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . . . 6 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2 dynkin.l . . . . . 6 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3 dynkin.o . . . . . 6 (𝜑𝑂𝑉)
4 sseq2 4006 . . . . . . . 8 (𝑣 = 𝑡 → (𝑇𝑣𝑇𝑡))
54cbvrabv 3439 . . . . . . 7 {𝑣𝐿𝑇𝑣} = {𝑡𝐿𝑇𝑡}
65inteqi 4955 . . . . . 6 {𝑣𝐿𝑇𝑣} = {𝑡𝐿𝑇𝑡}
7 dynkin.2 . . . . . 6 (𝜑𝑇𝑃)
81, 2, 3, 6, 7ldgenpisys 33790 . . . . 5 (𝜑 {𝑣𝐿𝑇𝑣} ∈ 𝑃)
91ispisys2 33777 . . . . . . . . 9 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅}) 𝑥𝑇))
109simplbi 496 . . . . . . . 8 (𝑇𝑃𝑇 ∈ 𝒫 𝒫 𝑂)
117, 10syl 17 . . . . . . 7 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
1211elpwid 4613 . . . . . 6 (𝜑𝑇 ⊆ 𝒫 𝑂)
132, 3, 12ldsysgenld 33784 . . . . 5 (𝜑 {𝑣𝐿𝑇𝑣} ∈ 𝐿)
148, 13elind 4194 . . . 4 (𝜑 {𝑣𝐿𝑇𝑣} ∈ (𝑃𝐿))
151, 2sigapildsys 33786 . . . 4 (sigAlgebra‘𝑂) = (𝑃𝐿)
1614, 15eleqtrrdi 2839 . . 3 (𝜑 {𝑣𝐿𝑇𝑣} ∈ (sigAlgebra‘𝑂))
17 ssintub 4971 . . . 4 𝑇 {𝑣𝐿𝑇𝑣}
1817a1i 11 . . 3 (𝜑𝑇 {𝑣𝐿𝑇𝑣})
19 sseq2 4006 . . . 4 (𝑢 = {𝑣𝐿𝑇𝑣} → (𝑇𝑢𝑇 {𝑣𝐿𝑇𝑣}))
2019intminss 4979 . . 3 (( {𝑣𝐿𝑇𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 {𝑣𝐿𝑇𝑣}) → {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ {𝑣𝐿𝑇𝑣})
2116, 18, 20syl2anc 582 . 2 (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ {𝑣𝐿𝑇𝑣})
22 dynkin.1 . . 3 (𝜑𝑆𝐿)
23 dynkin.3 . . 3 (𝜑𝑇𝑆)
24 sseq2 4006 . . . 4 (𝑣 = 𝑆 → (𝑇𝑣𝑇𝑆))
2524intminss 4979 . . 3 ((𝑆𝐿𝑇𝑆) → {𝑣𝐿𝑇𝑣} ⊆ 𝑆)
2622, 23, 25syl2anc 582 . 2 (𝜑 {𝑣𝐿𝑇𝑣} ⊆ 𝑆)
2721, 26sstrd 3990 1 (𝜑 {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇𝑢} ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3057  {crab 3428  cdif 3944  cin 3946  wss 3947  c0 4324  𝒫 cpw 4604  {csn 4630   cuni 4910   cint 4951  Disj wdisj 5115   class class class wbr 5150  cfv 6551  ωcom 7874  cdom 8966  Fincfn 8968  ficfi 9439  sigAlgebracsiga 33732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-ac2 10492  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-disj 5116  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fi 9440  df-sup 9471  df-inf 9472  df-oi 9539  df-dju 9930  df-card 9968  df-acn 9971  df-ac 10145  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-fz 13523  df-fzo 13666  df-siga 33733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator