![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dynkin | Structured version Visualization version GIF version |
Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020.) |
Ref | Expression |
---|---|
dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
dynkin.1 | ⊢ (𝜑 → 𝑆 ∈ 𝐿) |
dynkin.2 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
dynkin.3 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
dynkin | ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
2 | dynkin.l | . . . . . 6 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
3 | dynkin.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
4 | sseq2 4006 | . . . . . . . 8 ⊢ (𝑣 = 𝑡 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑡)) | |
5 | 4 | cbvrabv 3439 | . . . . . . 7 ⊢ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
6 | 5 | inteqi 4955 | . . . . . 6 ⊢ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
7 | dynkin.2 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
8 | 1, 2, 3, 6, 7 | ldgenpisys 33790 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝑃) |
9 | 1 | ispisys2 33777 | . . . . . . . . 9 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑇 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑇)) |
10 | 9 | simplbi 496 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝑃 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
11 | 7, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
12 | 11 | elpwid 4613 | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
13 | 2, 3, 12 | ldsysgenld 33784 | . . . . 5 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ 𝐿) |
14 | 8, 13 | elind 4194 | . . . 4 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (𝑃 ∩ 𝐿)) |
15 | 1, 2 | sigapildsys 33786 | . . . 4 ⊢ (sigAlgebra‘𝑂) = (𝑃 ∩ 𝐿) |
16 | 14, 15 | eleqtrrdi 2839 | . . 3 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂)) |
17 | ssintub 4971 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} | |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
19 | sseq2 4006 | . . . 4 ⊢ (𝑢 = ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} → (𝑇 ⊆ 𝑢 ↔ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣})) | |
20 | 19 | intminss 4979 | . . 3 ⊢ ((∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ∈ (sigAlgebra‘𝑂) ∧ 𝑇 ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
21 | 16, 18, 20 | syl2anc 582 | . 2 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣}) |
22 | dynkin.1 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐿) | |
23 | dynkin.3 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
24 | sseq2 4006 | . . . 4 ⊢ (𝑣 = 𝑆 → (𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑆)) | |
25 | 24 | intminss 4979 | . . 3 ⊢ ((𝑆 ∈ 𝐿 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
26 | 22, 23, 25 | syl2anc 582 | . 2 ⊢ (𝜑 → ∩ {𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣} ⊆ 𝑆) |
27 | 21, 26 | sstrd 3990 | 1 ⊢ (𝜑 → ∩ {𝑢 ∈ (sigAlgebra‘𝑂) ∣ 𝑇 ⊆ 𝑢} ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3057 {crab 3428 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∅c0 4324 𝒫 cpw 4604 {csn 4630 ∪ cuni 4910 ∩ cint 4951 Disj wdisj 5115 class class class wbr 5150 ‘cfv 6551 ωcom 7874 ≼ cdom 8966 Fincfn 8968 ficfi 9439 sigAlgebracsiga 33732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-ac2 10492 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-disj 5116 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fi 9440 df-sup 9471 df-inf 9472 df-oi 9539 df-dju 9930 df-card 9968 df-acn 9971 df-ac 10145 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-fzo 13666 df-siga 33733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |