![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjors | Structured version Visualization version GIF version |
Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjors | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑖𝐵 | |
2 | nfcsb1v 3914 | . . 3 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
3 | csbeq1a 3903 | . . 3 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
4 | 1, 2, 3 | cbvdisj 5117 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵) |
5 | csbeq1 3892 | . . 3 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
6 | 5 | disjor 5122 | . 2 ⊢ (Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑥⦌𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
7 | 4, 6 | bitri 275 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 846 = wceq 1534 ∀wral 3056 ⦋csb 3889 ∩ cin 3943 ∅c0 4318 Disj wdisj 5107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rmo 3371 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-in 3951 df-nul 4319 df-disj 5108 |
This theorem is referenced by: disji2 5124 disjprgw 5137 disjprg 5138 disjxiun 5139 disjxun 5140 iundisj2 25465 disji2f 32352 disjpreima 32359 disjxpin 32363 iundisj2f 32365 disjunsn 32369 iundisj2fi 32549 disjxp1 44356 disjinfi 44488 |
Copyright terms: Public domain | W3C validator |