MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2g Structured version   Visualization version   GIF version

Theorem dfiun2g 5027
Description: Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) Avoid ax-10 2130, ax-12 2164. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
dfiun2g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem dfiun2g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4993 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 elisset 2810 . . . . . . . . 9 (𝐵𝐶 → ∃𝑧 𝑧 = 𝐵)
3 eleq2 2817 . . . . . . . . . . . 12 (𝑧 = 𝐵 → (𝑤𝑧𝑤𝐵))
43pm5.32ri 575 . . . . . . . . . . 11 ((𝑤𝑧𝑧 = 𝐵) ↔ (𝑤𝐵𝑧 = 𝐵))
54simplbi2 500 . . . . . . . . . 10 (𝑤𝐵 → (𝑧 = 𝐵 → (𝑤𝑧𝑧 = 𝐵)))
65eximdv 1913 . . . . . . . . 9 (𝑤𝐵 → (∃𝑧 𝑧 = 𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
72, 6syl5com 31 . . . . . . . 8 (𝐵𝐶 → (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
87ralimi 3078 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)))
9 rexim 3082 . . . . . . 7 (∀𝑥𝐴 (𝑤𝐵 → ∃𝑧(𝑤𝑧𝑧 = 𝐵)) → (∃𝑥𝐴 𝑤𝐵 → ∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵)))
108, 9syl 17 . . . . . 6 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 → ∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵)))
11 rexcom4 3280 . . . . . . 7 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = 𝐵))
12 r19.42v 3185 . . . . . . . 8 (∃𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1312exbii 1843 . . . . . . 7 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1411, 13bitri 275 . . . . . 6 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = 𝐵) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
1510, 14imbitrdi 250 . . . . 5 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 → ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵)))
163biimpac 478 . . . . . . . 8 ((𝑤𝑧𝑧 = 𝐵) → 𝑤𝐵)
1716reximi 3079 . . . . . . 7 (∃𝑥𝐴 (𝑤𝑧𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
1812, 17sylbir 234 . . . . . 6 ((𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
1918exlimiv 1926 . . . . 5 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑤𝐵)
2015, 19impbid1 224 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑤𝐵 ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵)))
21 vex 3473 . . . . 5 𝑤 ∈ V
22 eleq1w 2811 . . . . . 6 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
2322rexbidv 3173 . . . . 5 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑥𝐴 𝑤𝐵))
2421, 23elab 3665 . . . 4 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ ∃𝑥𝐴 𝑤𝐵)
25 eluni 4906 . . . . 5 (𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
26 vex 3473 . . . . . . . 8 𝑧 ∈ V
27 eqeq1 2731 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 = 𝐵𝑧 = 𝐵))
2827rexbidv 3173 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2926, 28elab 3665 . . . . . . 7 (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3029anbi2i 622 . . . . . 6 ((𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3130exbii 1843 . . . . 5 (∃𝑧(𝑤𝑧𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3225, 31bitri 275 . . . 4 (𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = 𝐵))
3320, 24, 323bitr4g 314 . . 3 (∀𝑥𝐴 𝐵𝐶 → (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} ↔ 𝑤 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
3433eqrdv 2725 . 2 (∀𝑥𝐴 𝐵𝐶 → {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
351, 34eqtrid 2779 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wex 1774  wcel 2099  {cab 2704  wral 3056  wrex 3065   cuni 4903   ciun 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-11 2147  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-v 3471  df-uni 4904  df-iun 4993
This theorem is referenced by:  dfiun2  5030  dfiun3g  5961  abnexg  7752  iunexg  7961  uniqs  8787  ac6num  10494  iunopn  22787  pnrmopn  23234  cncmp  23283  ptcmplem3  23945  iunmbl  25469  voliun  25470  sigaclcuni  33673  sigaclcu2  33675  sigaclci  33687  measvunilem  33767  meascnbl  33774  carsgclctunlem3  33876  uniqsALTV  37737
  Copyright terms: Public domain W3C validator