![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunsALTV2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
Ref | Expression |
---|---|
dffunsALTV2 | ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunsALTV 38155 | . 2 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | |
2 | cosselcnvrefrels2 38010 | . . 3 ⊢ ( ≀ 𝑓 ∈ CnvRefRels ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels )) | |
3 | cosselrels 37968 | . . . 4 ⊢ (𝑓 ∈ Rels → ≀ 𝑓 ∈ Rels ) | |
4 | 3 | biantrud 531 | . . 3 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ⊆ I ↔ ( ≀ 𝑓 ⊆ I ∧ ≀ 𝑓 ∈ Rels ))) |
5 | 2, 4 | bitr4id 290 | . 2 ⊢ (𝑓 ∈ Rels → ( ≀ 𝑓 ∈ CnvRefRels ↔ ≀ 𝑓 ⊆ I )) |
6 | 1, 5 | rabimbieq 37723 | 1 ⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3429 ⊆ wss 3947 I cid 5575 ≀ ccoss 37648 Rels crels 37650 CnvRefRels ccnvrefrels 37656 FunsALTV cfunsALTV 37678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-coss 37883 df-rels 37957 df-ssr 37970 df-cnvrefs 37997 df-cnvrefrels 37998 df-funss 38152 df-funsALTV 38153 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |