![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj4 | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
Ref | Expression |
---|---|
dfeldisj4 | ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eldisj 38174 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
2 | relres 6009 | . . 3 ⊢ Rel (◡ E ↾ 𝐴) | |
3 | dfdisjALTV4 38183 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ∧ Rel (◡ E ↾ 𝐴))) | |
4 | 2, 3 | mpbiran2 709 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥) |
5 | brcnvepres 37734 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢))) | |
6 | 5 | el2v 3478 | . . . . 5 ⊢ (𝑢(◡ E ↾ 𝐴)𝑥 ↔ (𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
7 | 6 | mobii 2538 | . . . 4 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) |
8 | df-rmo 3372 | . . . 4 ⊢ (∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ↔ ∃*𝑢(𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢)) | |
9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
10 | 9 | albii 1814 | . 2 ⊢ (∀𝑥∃*𝑢 𝑢(◡ E ↾ 𝐴)𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
11 | 1, 4, 10 | 3bitri 297 | 1 ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1532 ∈ wcel 2099 ∃*wmo 2528 ∃*wrmo 3371 Vcvv 3470 class class class wbr 5143 E cep 5576 ◡ccnv 5672 ↾ cres 5675 Rel wrel 5678 Disj wdisjALTV 37677 ElDisj weldisj 37679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-id 5571 df-eprel 5577 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-coss 37878 df-cnvrefrel 37994 df-disjALTV 38172 df-eldisj 38174 |
This theorem is referenced by: dfeldisj5 38188 |
Copyright terms: Public domain | W3C validator |