![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjALTV2 | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV2 38160. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
dfdisjALTV2 | ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disjALTV 38177 | . 2 ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | |
2 | cnvrefrelcoss2 38009 | . . 3 ⊢ ( CnvRefRel ≀ ◡𝑅 ↔ ≀ ◡𝑅 ⊆ I ) | |
3 | 2 | anbi1i 623 | . 2 ⊢ (( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅) ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
4 | 1, 3 | bitri 275 | 1 ⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ⊆ wss 3947 I cid 5575 ◡ccnv 5677 Rel wrel 5683 ≀ ccoss 37648 CnvRefRel wcnvrefrel 37657 Disj wdisjALTV 37682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-coss 37883 df-cnvrefrel 37999 df-disjALTV 38177 |
This theorem is referenced by: dfdisjALTV3 38187 dfdisjALTV4 38188 dfdisjALTV5 38189 dfeldisj2 38190 disjxrn 38218 disjorimxrn 38220 disjALTVid 38227 |
Copyright terms: Public domain | W3C validator |