Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjALTV2 Structured version   Visualization version   GIF version

Theorem dfdisjALTV2 38186
Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV2 38160. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
dfdisjALTV2 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))

Proof of Theorem dfdisjALTV2
StepHypRef Expression
1 df-disjALTV 38177 . 2 ( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
2 cnvrefrelcoss2 38009 . . 3 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I )
32anbi1i 623 . 2 (( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅) ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
41, 3bitri 275 1 ( Disj 𝑅 ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wss 3947   I cid 5575  ccnv 5677  Rel wrel 5683  ccoss 37648   CnvRefRel wcnvrefrel 37657   Disj wdisjALTV 37682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-coss 37883  df-cnvrefrel 37999  df-disjALTV 38177
This theorem is referenced by:  dfdisjALTV3  38187  dfdisjALTV4  38188  dfdisjALTV5  38189  dfeldisj2  38190  disjxrn  38218  disjorimxrn  38220  disjALTVid  38227
  Copyright terms: Public domain W3C validator