![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefeq | Structured version Visualization version GIF version |
Description: Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefeq | ⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4203 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝒫 𝑗 ∩ 𝐴) = (𝒫 𝑗 ∩ 𝐵)) | |
2 | 1 | rexeqdv 3322 | . . . . 5 ⊢ (𝐴 = 𝐵 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) |
3 | 2 | imbi2d 340 | . . . 4 ⊢ (𝐴 = 𝐵 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ (∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
4 | 3 | ralbidv 3173 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
5 | 4 | rabbidv 3436 | . 2 ⊢ (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)}) |
6 | df-cref 33439 | . 2 ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | |
7 | df-cref 33439 | . 2 ⊢ CovHasRef𝐵 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)} | |
8 | 5, 6, 7 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∀wral 3057 ∃wrex 3066 {crab 3428 ∩ cin 3944 𝒫 cpw 4599 ∪ cuni 4904 class class class wbr 5143 Topctop 22789 Refcref 23400 CovHasRefccref 33438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-in 3952 df-cref 33439 |
This theorem is referenced by: ispcmp 33453 |
Copyright terms: Public domain | W3C validator |