![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosseqi | Structured version Visualization version GIF version |
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.) |
Ref | Expression |
---|---|
cosseqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
cosseqi | ⊢ ≀ 𝐴 = ≀ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosseqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | cosseq 37898 | . 2 ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ≀ 𝐴 = ≀ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ≀ ccoss 37648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-br 5149 df-opab 5211 df-coss 37883 |
This theorem is referenced by: br1cossinres 37919 br1cossxrnres 37920 cosscnvid 37953 |
Copyright terms: Public domain | W3C validator |