![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzfval | Structured version Visualization version GIF version |
Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzfval | ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.z | . 2 ⊢ 𝑍 = (Cntz‘𝑀) | |
2 | elex 3488 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
3 | fveq2 6891 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
4 | cntzfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
5 | 3, 4 | eqtr4di 2785 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
6 | 5 | pweqd 4615 | . . . . 5 ⊢ (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 𝐵) |
7 | fveq2 6891 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
8 | cntzfval.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑀) | |
9 | 7, 8 | eqtr4di 2785 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = + ) |
10 | 9 | oveqd 7431 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑥(+g‘𝑚)𝑦) = (𝑥 + 𝑦)) |
11 | 9 | oveqd 7431 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑦(+g‘𝑚)𝑥) = (𝑦 + 𝑥)) |
12 | 10, 11 | eqeq12d 2743 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
13 | 12 | ralbidv 3172 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) ↔ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
14 | 5, 13 | rabeqbidv 3444 | . . . . 5 ⊢ (𝑚 = 𝑀 → {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
15 | 6, 14 | mpteq12dv 5233 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
16 | df-cntz 19259 | . . . 4 ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) | |
17 | 4 | fvexi 6905 | . . . . . 6 ⊢ 𝐵 ∈ V |
18 | 17 | pwex 5374 | . . . . 5 ⊢ 𝒫 𝐵 ∈ V |
19 | 18 | mptex 7229 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) ∈ V |
20 | 15, 16, 19 | fvmpt 6999 | . . 3 ⊢ (𝑀 ∈ V → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
21 | 2, 20 | syl 17 | . 2 ⊢ (𝑀 ∈ 𝑉 → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
22 | 1, 21 | eqtrid 2779 | 1 ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 Vcvv 3469 𝒫 cpw 4598 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 Basecbs 17171 +gcplusg 17224 Cntzccntz 19257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-cntz 19259 |
This theorem is referenced by: cntzval 19263 cntzrcl 19269 |
Copyright terms: Public domain | W3C validator |