MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmnf Structured version   Visualization version   GIF version

Theorem cntzcmnf 19794
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzcmnf.b 𝐵 = (Base‘𝐺)
cntzcmnf.z 𝑍 = (Cntz‘𝐺)
cntzcmnf.g (𝜑𝐺 ∈ CMnd)
cntzcmnf.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
cntzcmnf (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))

Proof of Theorem cntzcmnf
StepHypRef Expression
1 cntzcmnf.f . . 3 (𝜑𝐹:𝐴𝐵)
21frnd 6725 . 2 (𝜑 → ran 𝐹𝐵)
3 cntzcmnf.g . . 3 (𝜑𝐺 ∈ CMnd)
4 cntzcmnf.b . . . 4 𝐵 = (Base‘𝐺)
5 cntzcmnf.z . . . 4 𝑍 = (Cntz‘𝐺)
64, 5cntzcmn 19789 . . 3 ((𝐺 ∈ CMnd ∧ ran 𝐹𝐵) → (𝑍‘ran 𝐹) = 𝐵)
73, 2, 6syl2anc 583 . 2 (𝜑 → (𝑍‘ran 𝐹) = 𝐵)
82, 7sseqtrrd 4020 1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3945  ran crn 5674  wf 6539  cfv 6543  Basecbs 17174  Cntzccntz 19260  CMndccmn 19729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-cntz 19262  df-cmn 19731
This theorem is referenced by:  gsumres  19862  gsumcl2  19863  gsumf1o  19865  gsumsubmcl  19868  gsumsplit  19877  gsummhm  19887  gsumfsum  21361  wilthlem3  26996
  Copyright terms: Public domain W3C validator