MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest2 Structured version   Visualization version   GIF version

Theorem cnprest2 23187
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = 𝐽
cnprest.2 𝑌 = 𝐾
Assertion
Ref Expression
cnprest2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))

Proof of Theorem cnprest2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 23139 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
2 cnprest.1 . . . . 5 𝑋 = 𝐽
32cnprcl 23142 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
41, 3jca 511 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
54a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
6 cnptop1 23139 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝐽 ∈ Top)
72cnprcl 23142 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝑃𝑋)
86, 7jca 511 . . 3 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
98a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
10 simpl2 1190 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝐵)
11 simprr 772 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑃𝑋)
1210, 11ffvelcdmd 7089 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑃) ∈ 𝐵)
1312biantrud 531 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵)))
14 elin 3961 . . . . . . . 8 ((𝐹𝑃) ∈ (𝑥𝐵) ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵))
1513, 14bitr4di 289 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
16 imassrn 6068 . . . . . . . . . . . 12 (𝐹𝑦) ⊆ ran 𝐹
1710frnd 6724 . . . . . . . . . . . 12 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ran 𝐹𝐵)
1816, 17sstrid 3989 . . . . . . . . . . 11 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑦) ⊆ 𝐵)
1918biantrud 531 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ ((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵)))
20 ssin 4226 . . . . . . . . . 10 (((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵) ↔ (𝐹𝑦) ⊆ (𝑥𝐵))
2119, 20bitrdi 287 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
2221anbi2d 629 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2322rexbidv 3174 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2415, 23imbi12d 344 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
2524ralbidv 3173 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
26 vex 3474 . . . . . . . 8 𝑥 ∈ V
2726inex1 5311 . . . . . . 7 (𝑥𝐵) ∈ V
2827a1i 11 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
29 simpl1 1189 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ Top)
30 cnprest.2 . . . . . . . . . 10 𝑌 = 𝐾
31 uniexg 7739 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ V)
3230, 31eqeltrid 2833 . . . . . . . . 9 (𝐾 ∈ Top → 𝑌 ∈ V)
3329, 32syl 17 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑌 ∈ V)
34 simpl3 1191 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵𝑌)
3533, 34ssexd 5318 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵 ∈ V)
36 elrest 17402 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
3729, 35, 36syl2anc 583 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
38 eleq2 2818 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝐹𝑃) ∈ 𝑧 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
39 sseq2 4004 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → ((𝐹𝑦) ⊆ 𝑧 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
4039anbi2d 629 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4140rexbidv 3174 . . . . . . . 8 (𝑧 = (𝑥𝐵) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4238, 41imbi12d 344 . . . . . . 7 (𝑧 = (𝑥𝐵) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4342adantl 481 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑧 = (𝑥𝐵)) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4428, 37, 43ralxfr2d 5404 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4525, 44bitr4d 282 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
4610, 34fssd 6734 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝑌)
47 simprl 770 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ Top)
482, 30iscnp2 23136 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
4948baib 535 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5047, 29, 11, 49syl3anc 1369 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5146, 50mpbirand 706 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))))
522toptopon 22812 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5347, 52sylib 217 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
5430toptopon 22812 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
5529, 54sylib 217 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
56 resttopon 23058 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
5755, 34, 56syl2anc 583 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
58 iscnp 23134 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
5953, 57, 11, 58syl3anc 1369 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6010, 59mpbirand 706 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
6145, 51, 603bitr4d 311 . . 3 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
6261ex 412 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃))))
635, 9, 62pm5.21ndd 379 1 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  wrex 3066  Vcvv 3470  cin 3944  wss 3945   cuni 4903  ran crn 5673  cima 5675  wf 6538  cfv 6542  (class class class)co 7414  t crest 17395  Topctop 22788  TopOnctopon 22805   CnP ccnp 23122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-map 8840  df-en 8958  df-fin 8961  df-fi 9428  df-rest 17397  df-topgen 17418  df-top 22789  df-topon 22806  df-bases 22842  df-cnp 23125
This theorem is referenced by:  limccnp  25813  limccnp2  25814  dirkercncflem4  45488  dirkercncf  45489  fouriercnp  45608
  Copyright terms: Public domain W3C validator