![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnima | Structured version Visualization version GIF version |
Description: An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.) |
Ref | Expression |
---|---|
cnima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2727 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 1, 2 | iscn2 23129 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
5 | 4 | simprd 495 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
6 | imaeq2 6053 | . . . 4 ⊢ (𝑥 = 𝐴 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝐴)) | |
7 | 6 | eleq1d 2813 | . . 3 ⊢ (𝑥 = 𝐴 → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ 𝐽)) |
8 | 7 | rspccva 3606 | . 2 ⊢ ((∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽 ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
9 | 5, 8 | sylan 579 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∪ cuni 4903 ◡ccnv 5671 “ cima 5675 ⟶wf 6538 (class class class)co 7414 Topctop 22782 Cn ccn 23115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8838 df-top 22783 df-topon 22800 df-cn 23118 |
This theorem is referenced by: cnco 23157 cnclima 23159 cnntri 23162 cnss1 23167 cnss2 23168 cncnpi 23169 cnrest 23176 cnt0 23237 cnhaus 23245 cncmp 23283 cnconn 23313 2ndcomap 23349 kgencn3 23449 txcnmpt 23515 txdis1cn 23526 pthaus 23529 ptrescn 23530 txkgen 23543 xkoco2cn 23549 xkococnlem 23550 txconn 23580 imasnopn 23581 qtopkgen 23601 qtopss 23606 isr0 23628 kqreglem1 23632 kqreglem2 23633 kqnrmlem1 23634 kqnrmlem2 23635 hmeoima 23656 hmeoopn 23657 hmeoimaf1o 23661 reghmph 23684 nrmhmph 23685 tmdgsum2 23987 symgtgp 23997 ghmcnp 24006 tgpt0 24010 qustgpopn 24011 qustgplem 24012 nmhmcn 25034 mbfimaopnlem 25571 cncombf 25574 cnmbf 25575 dvloglem 26569 efopnlem2 26578 efopn 26579 atansopn 26851 cnmbfm 33819 cvmsss2 34820 cvmliftmolem2 34828 cvmliftlem15 34844 cvmlift2lem9a 34849 cvmlift2lem9 34857 cvmlift2lem10 34858 cvmlift3lem6 34870 cvmlift3lem8 34872 dvtanlem 37077 rfcnpre1 44304 rfcnpre2 44316 icccncfext 45198 |
Copyright terms: Public domain | W3C validator |