![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldtopn | Structured version Visualization version GIF version |
Description: The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnfldtopn | ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldtopn.1 | . 2 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
2 | cnxmet 24676 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
3 | eqid 2727 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
4 | 3 | mopntopon 24332 | . . 3 ⊢ ((abs ∘ − ) ∈ (∞Met‘ℂ) → (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)) |
5 | cnfldbas 21270 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
6 | cnfldtset 21276 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | |
7 | 5, 6 | topontopn 22829 | . . 3 ⊢ ((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) → (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld)) |
8 | 2, 4, 7 | mp2b 10 | . 2 ⊢ (MetOpen‘(abs ∘ − )) = (TopOpen‘ℂfld) |
9 | 1, 8 | eqtr4i 2758 | 1 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∘ ccom 5676 ‘cfv 6542 ℂcc 11128 − cmin 11466 abscabs 15205 TopOpenctopn 17394 ∞Metcxmet 21251 MetOpencmopn 21256 ℂfldccnfld 21266 TopOnctopon 22799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-fz 13509 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-struct 17107 df-slot 17142 df-ndx 17154 df-base 17172 df-plusg 17237 df-mulr 17238 df-starv 17239 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-rest 17395 df-topn 17396 df-topgen 17416 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-cnfld 21267 df-top 22783 df-topon 22800 df-bases 22836 |
This theorem is referenced by: cnfldhaus 24688 tgioo2 24706 recld2 24717 zdis 24719 reperflem 24721 addcnlem 24767 divcnOLD 24771 divcn 24773 dfii3 24790 cncfcn 24817 cnheibor 24868 cnllycmp 24869 ipcn 25161 lmclim 25218 cncmet 25237 recmet 25238 ellimc3 25795 dvlipcn 25914 lhop1lem 25933 ftc1lem6 25963 ulmdvlem3 26325 psercn 26350 pserdvlem2 26352 abelth 26365 dvlog2 26574 efopnlem2 26578 efopn 26579 logtayl 26581 cxpcn3 26670 rlimcnp 26884 xrlimcnp 26887 efrlim 26888 efrlimOLD 26889 lgamucov 26957 ftalem3 26994 smcnlem 30494 hhcnf 31702 tpr2rico 33449 cnllysconn 34791 ftc1cnnc 37100 binomcxplemdvbinom 43713 binomcxplemnotnn0 43716 limcrecl 44940 islpcn 44950 |
Copyright terms: Public domain | W3C validator |