MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqf Structured version   Visualization version   GIF version

Theorem cleqf 2929
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2720. See also cleqh 2858. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2366. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2130. (Revised by Gino Giotto, 20-Aug-2023.)
Hypotheses
Ref Expression
cleqf.1 𝑥𝐴
cleqf.2 𝑥𝐵
Assertion
Ref Expression
cleqf (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem cleqf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2720 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1910 . . 3 𝑦(𝑥𝐴𝑥𝐵)
3 cleqf.1 . . . . 5 𝑥𝐴
43nfcri 2885 . . . 4 𝑥 𝑦𝐴
5 cleqf.2 . . . . 5 𝑥𝐵
65nfcri 2885 . . . 4 𝑥 𝑦𝐵
74, 6nfbi 1899 . . 3 𝑥(𝑦𝐴𝑦𝐵)
8 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
9 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108, 9bibi12d 345 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
112, 7, 10cbvalv1 2332 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
121, 11bitr4i 278 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1532   = wceq 1534  wcel 2099  wnfc 2878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-cleq 2719  df-clel 2805  df-nfc 2880
This theorem is referenced by:  eqabf  2930  abid2fOLD  2932  eqvf  3479  eqrd  3997  eq0f  4336  iunab  5048  iinab  5065  mbfposr  25568  mbfinf  25581  itg1climres  25631  bnj1366  34396  bj-rabtrALT  36345  bj-rcleqf  36440  compab  43802  ssmapsn  44512  infnsuprnmpt  44549  pimrecltpos  46019  pimrecltneg  46035  smfaddlem1  46074  smflimsuplem7  46137  absnsb  46332
  Copyright terms: Public domain W3C validator