MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldopn Structured version   Visualization version   GIF version

Theorem cldopn 22929
Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldopn (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)

Proof of Theorem cldopn
StepHypRef Expression
1 cldrcl 22924 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22925 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simplbda 499 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋𝑆) ∈ 𝐽)
51, 4mpancom 687 1 (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cdif 3942  wss 3945   cuni 4904  cfv 6543  Topctop 22789  Clsdccld 22914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-top 22790  df-cld 22917
This theorem is referenced by:  difopn  22932  iincld  22937  uncld  22939  iuncld  22943  clsval2  22948  opncldf1  22982  opncldf3  22984  restcld  23070  lecldbas  23117  cnclima  23166  nrmsep2  23254  nrmsep  23255  regsep2  23274  cmpcld  23300  dfconn2  23317  txcld  23501  ptcld  23511  kqcldsat  23631  regr1lem  23637  filconn  23781  cldsubg  24009  limcnlp  25801  dvrec  25881  dvexp3  25904  lhop1lem  25940  abelth  26372  logdmopn  26577  lgamucov  26964  onsucconni  35916  onint1  35928  pibt2  36891  mblfinlem3  37127  mblfinlem4  37128  ismblfin  37129  dvtanlem  37137  dvasin  37172  dvacos  37173  dvreasin  37174  dvreacos  37175  fourierdlem62  45547  opncldeqv  47911  iscnrm3rlem5  47954
  Copyright terms: Public domain W3C validator