![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldopn | Structured version Visualization version GIF version |
Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldopn | ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22924 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | iscld 22925 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
4 | 3 | simplbda 499 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
5 | 1, 4 | mpancom 687 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3942 ⊆ wss 3945 ∪ cuni 4904 ‘cfv 6543 Topctop 22789 Clsdccld 22914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-top 22790 df-cld 22917 |
This theorem is referenced by: difopn 22932 iincld 22937 uncld 22939 iuncld 22943 clsval2 22948 opncldf1 22982 opncldf3 22984 restcld 23070 lecldbas 23117 cnclima 23166 nrmsep2 23254 nrmsep 23255 regsep2 23274 cmpcld 23300 dfconn2 23317 txcld 23501 ptcld 23511 kqcldsat 23631 regr1lem 23637 filconn 23781 cldsubg 24009 limcnlp 25801 dvrec 25881 dvexp3 25904 lhop1lem 25940 abelth 26372 logdmopn 26577 lgamucov 26964 onsucconni 35916 onint1 35928 pibt2 36891 mblfinlem3 37127 mblfinlem4 37128 ismblfin 37129 dvtanlem 37137 dvasin 37172 dvacos 37173 dvreasin 37174 dvreacos 37175 fourierdlem62 45547 opncldeqv 47911 iscnrm3rlem5 47954 |
Copyright terms: Public domain | W3C validator |