HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3a Structured version   Visualization version   GIF version

Theorem cdj3lem3a 32242
Description: Lemma for cdj3i 32244. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem3.3 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
Assertion
Ref Expression
cdj3lem3a ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑧,𝑤,𝐴   𝑥,𝐵,𝑧,𝑤   𝑥,𝐶,𝑧,𝑤
Allowed substitution hints:   𝑇(𝑥,𝑧,𝑤)

Proof of Theorem cdj3lem3a
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.1 . . . 4 𝐴S
2 cdj3lem2.2 . . . 4 𝐵S
31, 2shseli 31119 . . 3 (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢))
4 cdj3lem3.3 . . . . . . . . . 10 𝑇 = (𝑥 ∈ (𝐴 + 𝐵) ↦ (𝑤𝐵𝑧𝐴 𝑥 = (𝑧 + 𝑤)))
51, 2, 4cdj3lem3 32241 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) = 𝑢)
6 simp2 1135 . . . . . . . . 9 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → 𝑢𝐵)
75, 6eqeltrd 2828 . . . . . . . 8 ((𝑣𝐴𝑢𝐵 ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵)
873expa 1116 . . . . . . 7 (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵)
9 fveq2 6891 . . . . . . . 8 (𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) = (𝑇‘(𝑣 + 𝑢)))
109eleq1d 2813 . . . . . . 7 (𝐶 = (𝑣 + 𝑢) → ((𝑇𝐶) ∈ 𝐵 ↔ (𝑇‘(𝑣 + 𝑢)) ∈ 𝐵))
118, 10imbitrrid 245 . . . . . 6 (𝐶 = (𝑣 + 𝑢) → (((𝑣𝐴𝑢𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵))
1211expd 415 . . . . 5 (𝐶 = (𝑣 + 𝑢) → ((𝑣𝐴𝑢𝐵) → ((𝐴𝐵) = 0 → (𝑇𝐶) ∈ 𝐵)))
1312com13 88 . . . 4 ((𝐴𝐵) = 0 → ((𝑣𝐴𝑢𝐵) → (𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) ∈ 𝐵)))
1413rexlimdvv 3205 . . 3 ((𝐴𝐵) = 0 → (∃𝑣𝐴𝑢𝐵 𝐶 = (𝑣 + 𝑢) → (𝑇𝐶) ∈ 𝐵))
153, 14biimtrid 241 . 2 ((𝐴𝐵) = 0 → (𝐶 ∈ (𝐴 + 𝐵) → (𝑇𝐶) ∈ 𝐵))
1615impcom 407 1 ((𝐶 ∈ (𝐴 + 𝐵) ∧ (𝐴𝐵) = 0) → (𝑇𝐶) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3065  cin 3943  cmpt 5225  cfv 6542  crio 7369  (class class class)co 7414   + cva 30723   S csh 30731   + cph 30734  0c0h 30738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-hilex 30802  ax-hfvadd 30803  ax-hvcom 30804  ax-hvass 30805  ax-hv0cl 30806  ax-hvaddid 30807  ax-hfvmul 30808  ax-hvmulid 30809  ax-hvmulass 30810  ax-hvdistr1 30811  ax-hvdistr2 30812  ax-hvmul0 30813
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-grpo 30296  df-ablo 30348  df-hvsub 30774  df-sh 31010  df-ch0 31056  df-shs 31111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator