![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cdj3lem3a | Structured version Visualization version GIF version |
Description: Lemma for cdj3i 32244. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdj3lem2.1 | ⊢ 𝐴 ∈ Sℋ |
cdj3lem2.2 | ⊢ 𝐵 ∈ Sℋ |
cdj3lem3.3 | ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) |
Ref | Expression |
---|---|
cdj3lem3a | ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdj3lem2.1 | . . . 4 ⊢ 𝐴 ∈ Sℋ | |
2 | cdj3lem2.2 | . . . 4 ⊢ 𝐵 ∈ Sℋ | |
3 | 1, 2 | shseli 31119 | . . 3 ⊢ (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢)) |
4 | cdj3lem3.3 | . . . . . . . . . 10 ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) | |
5 | 1, 2, 4 | cdj3lem3 32241 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝑣 +ℎ 𝑢)) = 𝑢) |
6 | simp2 1135 | . . . . . . . . 9 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝑢 ∈ 𝐵) | |
7 | 5, 6 | eqeltrd 2828 | . . . . . . . 8 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝑣 +ℎ 𝑢)) ∈ 𝐵) |
8 | 7 | 3expa 1116 | . . . . . . 7 ⊢ (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝑣 +ℎ 𝑢)) ∈ 𝐵) |
9 | fveq2 6891 | . . . . . . . 8 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (𝑇‘𝐶) = (𝑇‘(𝑣 +ℎ 𝑢))) | |
10 | 9 | eleq1d 2813 | . . . . . . 7 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑇‘𝐶) ∈ 𝐵 ↔ (𝑇‘(𝑣 +ℎ 𝑢)) ∈ 𝐵)) |
11 | 8, 10 | imbitrrid 245 | . . . . . 6 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → (((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵)) |
12 | 11 | expd 415 | . . . . 5 ⊢ (𝐶 = (𝑣 +ℎ 𝑢) → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → ((𝐴 ∩ 𝐵) = 0ℋ → (𝑇‘𝐶) ∈ 𝐵))) |
13 | 12 | com13 88 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵) → (𝐶 = (𝑣 +ℎ 𝑢) → (𝑇‘𝐶) ∈ 𝐵))) |
14 | 13 | rexlimdvv 3205 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (∃𝑣 ∈ 𝐴 ∃𝑢 ∈ 𝐵 𝐶 = (𝑣 +ℎ 𝑢) → (𝑇‘𝐶) ∈ 𝐵)) |
15 | 3, 14 | biimtrid 241 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ → (𝐶 ∈ (𝐴 +ℋ 𝐵) → (𝑇‘𝐶) ∈ 𝐵)) |
16 | 15 | impcom 407 | 1 ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 ∩ cin 3943 ↦ cmpt 5225 ‘cfv 6542 ℩crio 7369 (class class class)co 7414 +ℎ cva 30723 Sℋ csh 30731 +ℋ cph 30734 0ℋc0h 30738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-hilex 30802 ax-hfvadd 30803 ax-hvcom 30804 ax-hvass 30805 ax-hv0cl 30806 ax-hvaddid 30807 ax-hfvmul 30808 ax-hvmulid 30809 ax-hvmulass 30810 ax-hvdistr1 30811 ax-hvdistr2 30812 ax-hvmul0 30813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-grpo 30296 df-ablo 30348 df-hvsub 30774 df-sh 31010 df-ch0 31056 df-shs 31111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |