![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviotavw | Structured version Visualization version GIF version |
Description: Change bound variables in a description binder. Version of cbviotav 6505 with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
cbviotavw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbviotavw | ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviotavw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvabv 2800 | . . . . 5 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
3 | 2 | eqeq1i 2732 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜓} = {𝑧}) |
4 | 3 | abbii 2797 | . . 3 ⊢ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
5 | 4 | unieqi 4915 | . 2 ⊢ ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} |
6 | df-iota 6494 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
7 | df-iota 6494 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜓} = {𝑧}} | |
8 | 5, 6, 7 | 3eqtr4i 2765 | 1 ⊢ (℩𝑥𝜑) = (℩𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 {cab 2704 {csn 4624 ∪ cuni 4903 ℩cio 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 df-uni 4904 df-iota 6494 |
This theorem is referenced by: cbvriotavw 7380 oeeui 8616 nosupcbv 27628 noinfcbv 27643 ellimciota 44974 fourierdlem96 45562 fourierdlem97 45563 fourierdlem98 45564 fourierdlem99 45565 fourierdlem105 45571 fourierdlem106 45572 fourierdlem108 45574 fourierdlem110 45576 fourierdlem112 45578 fourierdlem113 45579 fourierdlem115 45581 funressndmafv2rn 46575 |
Copyright terms: Public domain | W3C validator |