![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbveuALT | Structured version Visualization version GIF version |
Description: Alternative proof of cbveu 2599. Since df-eu 2559 combines two other quantifiers, one can base this theorem on their associated 'change bounded variable' kind of theorems as well. (Contributed by Wolf Lammen, 5-Jan-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbveu.1 | ⊢ Ⅎ𝑦𝜑 |
cbveu.2 | ⊢ Ⅎ𝑥𝜓 |
cbveu.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbveuALT | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbveu.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbveu.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbveu.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvex 2394 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
5 | 1, 2, 3 | cbvmo 2595 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
6 | 4, 5 | anbi12i 627 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) |
7 | df-eu 2559 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
8 | df-eu 2559 | . 2 ⊢ (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) | |
9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1774 Ⅎwnf 1778 ∃*wmo 2528 ∃!weu 2558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-11 2147 ax-12 2167 ax-13 2367 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |