![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvesum | Structured version Visualization version GIF version |
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
Ref | Expression |
---|---|
cbvesum.1 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
cbvesum.2 | ⊢ Ⅎ𝑘𝐴 |
cbvesum.3 | ⊢ Ⅎ𝑗𝐴 |
cbvesum.4 | ⊢ Ⅎ𝑘𝐵 |
cbvesum.5 | ⊢ Ⅎ𝑗𝐶 |
Ref | Expression |
---|---|
cbvesum | ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvesum.3 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
2 | cbvesum.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
3 | cbvesum.4 | . . . . 5 ⊢ Ⅎ𝑘𝐵 | |
4 | cbvesum.5 | . . . . 5 ⊢ Ⅎ𝑗𝐶 | |
5 | cbvesum.1 | . . . . 5 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
6 | 1, 2, 3, 4, 5 | cbvmptf 5251 | . . . 4 ⊢ (𝑗 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
7 | 6 | oveq2i 7425 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) |
8 | 7 | unieqi 4915 | . 2 ⊢ ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) |
9 | df-esum 33583 | . 2 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑗 ∈ 𝐴 ↦ 𝐵)) | |
10 | df-esum 33583 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
11 | 8, 9, 10 | 3eqtr4i 2765 | 1 ⊢ Σ*𝑗 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 Ⅎwnfc 2878 ∪ cuni 4903 ↦ cmpt 5225 (class class class)co 7414 0cc0 11130 +∞cpnf 11267 [,]cicc 13351 ↾s cress 17200 ℝ*𝑠cxrs 17473 tsums ctsu 24017 Σ*cesum 33582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-iota 6494 df-fv 6550 df-ov 7417 df-esum 33583 |
This theorem is referenced by: cbvesumv 33598 esumfzf 33624 carsggect 33874 |
Copyright terms: Public domain | W3C validator |