Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvesum Structured version   Visualization version   GIF version

Theorem cbvesum 33597
Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
cbvesum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvesum.2 𝑘𝐴
cbvesum.3 𝑗𝐴
cbvesum.4 𝑘𝐵
cbvesum.5 𝑗𝐶
Assertion
Ref Expression
cbvesum Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvesum
StepHypRef Expression
1 cbvesum.3 . . . . 5 𝑗𝐴
2 cbvesum.2 . . . . 5 𝑘𝐴
3 cbvesum.4 . . . . 5 𝑘𝐵
4 cbvesum.5 . . . . 5 𝑗𝐶
5 cbvesum.1 . . . . 5 (𝑗 = 𝑘𝐵 = 𝐶)
61, 2, 3, 4, 5cbvmptf 5251 . . . 4 (𝑗𝐴𝐵) = (𝑘𝐴𝐶)
76oveq2i 7425 . . 3 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
87unieqi 4915 . 2 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
9 df-esum 33583 . 2 Σ*𝑗𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑗𝐴𝐵))
10 df-esum 33583 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
118, 9, 103eqtr4i 2765 1 Σ*𝑗𝐴𝐵 = Σ*𝑘𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wnfc 2878   cuni 4903  cmpt 5225  (class class class)co 7414  0cc0 11130  +∞cpnf 11267  [,]cicc 13351  s cress 17200  *𝑠cxrs 17473   tsums ctsu 24017  Σ*cesum 33582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-iota 6494  df-fv 6550  df-ov 7417  df-esum 33583
This theorem is referenced by:  cbvesumv  33598  esumfzf  33624  carsggect  33874
  Copyright terms: Public domain W3C validator