Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossinidres Structured version   Visualization version   GIF version

Theorem br1cossinidres 37915
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
br1cossinidres ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem br1cossinidres
StepHypRef Expression
1 br1cossinres 37913 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶))))
2 ideq2 37773 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐵𝑢 = 𝐵))
32elv 3476 . . . . 5 (𝑢 I 𝐵𝑢 = 𝐵)
43anbi1i 623 . . . 4 ((𝑢 I 𝐵𝑢𝑅𝐵) ↔ (𝑢 = 𝐵𝑢𝑅𝐵))
5 ideq2 37773 . . . . . 6 (𝑢 ∈ V → (𝑢 I 𝐶𝑢 = 𝐶))
65elv 3476 . . . . 5 (𝑢 I 𝐶𝑢 = 𝐶)
76anbi1i 623 . . . 4 ((𝑢 I 𝐶𝑢𝑅𝐶) ↔ (𝑢 = 𝐶𝑢𝑅𝐶))
84, 7anbi12i 627 . . 3 (((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶)) ↔ ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶)))
98rexbii 3090 . 2 (∃𝑢𝐴 ((𝑢 I 𝐵𝑢𝑅𝐵) ∧ (𝑢 I 𝐶𝑢𝑅𝐶)) ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶)))
101, 9bitrdi 287 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢𝐴 ((𝑢 = 𝐵𝑢𝑅𝐵) ∧ (𝑢 = 𝐶𝑢𝑅𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wrex 3066  Vcvv 3470  cin 3944   class class class wbr 5142   I cid 5569  cres 5674  ccoss 37642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-res 5684  df-coss 37877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator