![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossinidres | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are cosets by an intersection with the restricted identity class: a binary relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
br1cossinidres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossinres 37913 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)))) | |
2 | ideq2 37773 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐵 ↔ 𝑢 = 𝐵)) | |
3 | 2 | elv 3476 | . . . . 5 ⊢ (𝑢 I 𝐵 ↔ 𝑢 = 𝐵) |
4 | 3 | anbi1i 623 | . . . 4 ⊢ ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ↔ (𝑢 = 𝐵 ∧ 𝑢𝑅𝐵)) |
5 | ideq2 37773 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢 I 𝐶 ↔ 𝑢 = 𝐶)) | |
6 | 5 | elv 3476 | . . . . 5 ⊢ (𝑢 I 𝐶 ↔ 𝑢 = 𝐶) |
7 | 6 | anbi1i 623 | . . . 4 ⊢ ((𝑢 I 𝐶 ∧ 𝑢𝑅𝐶) ↔ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)) |
8 | 4, 7 | anbi12i 627 | . . 3 ⊢ (((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶))) |
9 | 8 | rexbii 3090 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢 I 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 I 𝐶 ∧ 𝑢𝑅𝐶)) ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶))) |
10 | 1, 9 | bitrdi 287 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ (𝑅 ∩ ( I ↾ 𝐴))𝐶 ↔ ∃𝑢 ∈ 𝐴 ((𝑢 = 𝐵 ∧ 𝑢𝑅𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑢𝑅𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 Vcvv 3470 ∩ cin 3944 class class class wbr 5142 I cid 5569 ↾ cres 5674 ≀ ccoss 37642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-res 5684 df-coss 37877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |