![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axdc2 | Structured version Visualization version GIF version |
Description: An apparent strengthening of ax-dc 10463 (but derived from it) which shows that there is a denumerable sequence 𝑔 for any function that maps elements of a set 𝐴 to nonempty subsets of 𝐴 such that 𝑔(𝑥 + 1) ∈ 𝐹(𝑔(𝑥)) for all 𝑥 ∈ ω. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdc2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axdc2 | ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdc2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq1w 2811 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
4 | fveq2 6891 | . . . . . 6 ⊢ (𝑠 = 𝑥 → (𝐹‘𝑠) = (𝐹‘𝑥)) | |
5 | 4 | eleq2d 2814 | . . . . 5 ⊢ (𝑠 = 𝑥 → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑡 ∈ (𝐹‘𝑥))) |
6 | eleq1w 2811 | . . . . 5 ⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐹‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑥))) | |
7 | 5, 6 | sylan9bb 509 | . . . 4 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑡 ∈ (𝐹‘𝑠) ↔ 𝑦 ∈ (𝐹‘𝑥))) |
8 | 3, 7 | anbi12d 630 | . . 3 ⊢ ((𝑠 = 𝑥 ∧ 𝑡 = 𝑦) → ((𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥)))) |
9 | 8 | cbvopabv 5215 | . 2 ⊢ {〈𝑠, 𝑡〉 ∣ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ (𝐹‘𝑠))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} |
10 | fveq2 6891 | . . 3 ⊢ (𝑛 = 𝑥 → (ℎ‘𝑛) = (ℎ‘𝑥)) | |
11 | 10 | cbvmptv 5255 | . 2 ⊢ (𝑛 ∈ ω ↦ (ℎ‘𝑛)) = (𝑥 ∈ ω ↦ (ℎ‘𝑥)) |
12 | 1, 9, 11 | axdc2lem 10465 | 1 ⊢ ((𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:ω⟶𝐴 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 Vcvv 3469 ∖ cdif 3941 ∅c0 4318 𝒫 cpw 4598 {csn 4624 {copab 5204 ↦ cmpt 5225 suc csuc 6365 ⟶wf 6538 ‘cfv 6542 ωcom 7864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-dc 10463 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-om 7865 df-1o 8480 |
This theorem is referenced by: axdc3lem4 10470 |
Copyright terms: Public domain | W3C validator |