![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axaddass | Structured version Visualization version GIF version |
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 11195 be used later. Instead, use addass 11217. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 11157 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
2 | addcnsrec 11158 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E + [〈𝑧, 𝑤〉]◡ E ) = [〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉]◡ E ) | |
3 | addcnsrec 11158 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E + [〈𝑣, 𝑢〉]◡ E ) = [〈(𝑧 +R 𝑣), (𝑤 +R 𝑢)〉]◡ E ) | |
4 | addcnsrec 11158 | . 2 ⊢ ((((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ([〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉]◡ E + [〈𝑣, 𝑢〉]◡ E ) = [〈((𝑥 +R 𝑧) +R 𝑣), ((𝑦 +R 𝑤) +R 𝑢)〉]◡ E ) | |
5 | addcnsrec 11158 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([〈𝑥, 𝑦〉]◡ E + [〈(𝑧 +R 𝑣), (𝑤 +R 𝑢)〉]◡ E ) = [〈(𝑥 +R (𝑧 +R 𝑣)), (𝑦 +R (𝑤 +R 𝑢))〉]◡ E ) | |
6 | addclsr 11098 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 +R 𝑧) ∈ R) | |
7 | addclsr 11098 | . . . 4 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 +R 𝑤) ∈ R) | |
8 | 6, 7 | anim12i 612 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑧 ∈ R) ∧ (𝑦 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R)) |
9 | 8 | an4s 659 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R)) |
10 | addclsr 11098 | . . . 4 ⊢ ((𝑧 ∈ R ∧ 𝑣 ∈ R) → (𝑧 +R 𝑣) ∈ R) | |
11 | addclsr 11098 | . . . 4 ⊢ ((𝑤 ∈ R ∧ 𝑢 ∈ R) → (𝑤 +R 𝑢) ∈ R) | |
12 | 10, 11 | anim12i 612 | . . 3 ⊢ (((𝑧 ∈ R ∧ 𝑣 ∈ R) ∧ (𝑤 ∈ R ∧ 𝑢 ∈ R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) |
13 | 12 | an4s 659 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) |
14 | addasssr 11103 | . 2 ⊢ ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)) | |
15 | addasssr 11103 | . 2 ⊢ ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)) | |
16 | 1, 2, 3, 4, 5, 9, 13, 14, 15 | ecovass 8834 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 E cep 5575 ◡ccnv 5671 (class class class)co 7414 Rcnr 10880 +R cplr 10884 ℂcc 11128 + caddc 11133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8718 df-ec 8720 df-qs 8724 df-ni 10887 df-pli 10888 df-mi 10889 df-lti 10890 df-plpq 10923 df-mpq 10924 df-ltpq 10925 df-enq 10926 df-nq 10927 df-erq 10928 df-plq 10929 df-mq 10930 df-1nq 10931 df-rq 10932 df-ltnq 10933 df-np 10996 df-plp 10998 df-ltp 11000 df-enr 11070 df-nr 11071 df-plr 11072 df-c 11136 df-add 11141 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |