MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinval Structured version   Visualization version   GIF version

Theorem asinval 26801
Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinval (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))

Proof of Theorem asinval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7422 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
2 oveq1 7421 . . . . . . 7 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
32oveq2d 7430 . . . . . 6 (𝑥 = 𝐴 → (1 − (𝑥↑2)) = (1 − (𝐴↑2)))
43fveq2d 6895 . . . . 5 (𝑥 = 𝐴 → (√‘(1 − (𝑥↑2))) = (√‘(1 − (𝐴↑2))))
51, 4oveq12d 7432 . . . 4 (𝑥 = 𝐴 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
65fveq2d 6895 . . 3 (𝑥 = 𝐴 → (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) = (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
76oveq2d 7430 . 2 (𝑥 = 𝐴 → (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
8 df-asin 26784 . 2 arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))))
9 ovex 7447 . 2 (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ V
107, 8, 9fvmpt 6999 1 (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6542  (class class class)co 7414  cc 11128  1c1 11131  ici 11132   + caddc 11133   · cmul 11135  cmin 11466  -cneg 11467  2c2 12289  cexp 14050  csqrt 15204  logclog 26475  arcsincasin 26781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-asin 26784
This theorem is referenced by:  asinneg  26805  efiasin  26807  asinsin  26811  asin1  26813  asinbnd  26818  areacirclem4  37119
  Copyright terms: Public domain W3C validator