![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 608 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 2f1fvneq 7264 isocnv 7332 isocnv3 7334 f1oiso2 7354 xpexr2 7921 f1o2ndf1 8121 fnwelem 8130 omword 8584 oeword 8604 swoso 8751 xpf1o 9155 zorn2lem6 10516 ltapr 11060 ltord1 11762 pc11 16840 imasaddfnlem 17501 imasaddflem 17503 pslem 18555 mgmhmpropd 18649 mhmpropd 18740 frmdsssubm 18804 ghmsub 19169 gasubg 19244 invrpropd 20346 znfld 21481 cygznlem3 21490 mplcoe5lem 21964 evlseu 22016 cpmatmcl 22608 tgclb 22860 innei 23016 txcn 23517 txflf 23897 qustgplem 24012 clmsub4 25020 cfilresi 25210 volcn 25522 itg1addlem4 25615 itg1addlem4OLD 25616 dvlip 25913 plymullem1 26135 lgsdir2 27250 lgsdchr 27275 brbtwn2 28703 axcontlem7 28768 frgrncvvdeqlem8 30103 nvaddsub4 30454 hhcno 31701 hhcnf 31702 unopf1o 31713 counop 31718 afsval 34239 ontopbas 35848 onsuct0 35861 heicant 37063 ftc1anclem6 37106 equivbnd2 37200 ismtybndlem 37214 ismrer1 37246 iccbnd 37248 ghomco 37299 rngohomco 37382 rngoisocnv 37389 rngoisoco 37390 idlsubcl 37431 xihopellsmN 40664 dihopellsm 40665 f1o2d2 41644 dvconstbi 43694 ovolval5lem3 45965 imasetpreimafvbijlemf1 46667 fargshiftf1 46704 elpglem1 48065 |
Copyright terms: Public domain | W3C validator |