![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an32 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
Ref | Expression |
---|---|
an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an21 643 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 1 | biancomi 462 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an32s 651 3anan32 1095 indifdirOLD 4286 inrab2 4308 reupick 4319 difxp 6168 imadif 6637 respreima 7075 dff1o6 7284 dfoprab2 7478 f11o 7950 xpassen 9090 dfac5lem1 10146 kmlem3 10175 qbtwnre 13210 elioomnf 13453 modfsummod 15772 pcqcl 16824 tosso 18410 subgdmdprd 19990 pjfval2 21642 opsrtoslem1 21998 fvmptnn04if 22750 cmpcov2 23293 tx1cn 23512 tgphaus 24020 isms2 24355 elcncf1di 24814 elii1 24857 isclmp 25023 bddiblnc 25770 dvreslem 25837 dvdsflsumcom 27119 upgr2wlk 29481 upgrtrls 29514 upgristrl 29515 fusgr2wsp2nb 30143 cvnbtwn3 32097 ssmxidllem 33186 ordtconnlem1 33525 1stmbfm 33880 eulerpartlemn 34001 ballotlem2 34108 reprinrn 34250 reprdifc 34259 cusgr3cyclex 34746 dfon3 35488 brsuccf 35537 brsegle2 35705 bj-restn0b 36570 bj-opelidb1 36632 matunitlindflem2 37090 poimirlem25 37118 ftc1anc 37174 disjlem17 38271 prtlem17 38348 lcvnbtwn3 38500 cvrnbtwn3 38748 islpln5 39008 islvol5 39052 lhpexle3 39485 dibelval3 40620 dihglb2 40815 pm11.6 43829 stoweidlem17 45405 smfsuplem1 46199 |
Copyright terms: Public domain | W3C validator |