Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt2 Structured version   Visualization version   GIF version

Theorem acunirnmpt2 32439
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
acunirnmpt2.2 𝐶 = ran (𝑗𝐴𝐵)
acunirnmpt2.3 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
Assertion
Ref Expression
acunirnmpt2 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Distinct variable groups:   𝑓,𝑗,𝑥,𝐴   𝐵,𝑓   𝐶,𝑓,𝑗,𝑥   𝐷,𝑗   𝜑,𝑓,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑗)   𝐷(𝑥,𝑓)   𝑉(𝑥,𝑓,𝑗)

Proof of Theorem acunirnmpt2
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → 𝑦 ∈ ran (𝑗𝐴𝐵))
2 vex 3474 . . . . . . 7 𝑦 ∈ V
3 eqid 2728 . . . . . . . 8 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
43elrnmpt 5952 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
52, 4ax-mp 5 . . . . . 6 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
61, 5sylib 217 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
7 nfv 1910 . . . . . . . 8 𝑗(𝜑𝑥𝐶)
8 nfcv 2899 . . . . . . . . 9 𝑗𝑦
9 nfmpt1 5250 . . . . . . . . . 10 𝑗(𝑗𝐴𝐵)
109nfrn 5948 . . . . . . . . 9 𝑗ran (𝑗𝐴𝐵)
118, 10nfel 2913 . . . . . . . 8 𝑗 𝑦 ∈ ran (𝑗𝐴𝐵)
127, 11nfan 1895 . . . . . . 7 𝑗((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵))
13 nfv 1910 . . . . . . 7 𝑗 𝑥𝑦
1412, 13nfan 1895 . . . . . 6 𝑗(((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦)
15 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝑦)
16 simpr 484 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
1715, 16eleqtrd 2831 . . . . . . . 8 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐵)
1817ex 412 . . . . . . 7 (((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵𝑥𝐵))
1918ex 412 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (𝑗𝐴 → (𝑦 = 𝐵𝑥𝐵)))
2014, 19reximdai 3254 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 𝑥𝐵))
216, 20mpd 15 . . . 4 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑥𝐵)
22 acunirnmpt2.2 . . . . . . . 8 𝐶 = ran (𝑗𝐴𝐵)
2322eleq2i 2821 . . . . . . 7 (𝑥𝐶𝑥 ran (𝑗𝐴𝐵))
2423biimpi 215 . . . . . 6 (𝑥𝐶𝑥 ran (𝑗𝐴𝐵))
25 eluni2 4907 . . . . . 6 (𝑥 ran (𝑗𝐴𝐵) ↔ ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2624, 25sylib 217 . . . . 5 (𝑥𝐶 → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2726adantl 481 . . . 4 ((𝜑𝑥𝐶) → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2821, 27r19.29a 3158 . . 3 ((𝜑𝑥𝐶) → ∃𝑗𝐴 𝑥𝐵)
2928ralrimiva 3142 . 2 (𝜑 → ∀𝑥𝐶𝑗𝐴 𝑥𝐵)
30 acunirnmpt.0 . . . . 5 (𝜑𝐴𝑉)
31 mptexg 7227 . . . . 5 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
32 rnexg 7904 . . . . 5 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
33 uniexg 7739 . . . . 5 (ran (𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
3430, 31, 32, 334syl 19 . . . 4 (𝜑 ran (𝑗𝐴𝐵) ∈ V)
3522, 34eqeltrid 2833 . . 3 (𝜑𝐶 ∈ V)
36 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
3736raleqdv 3321 . . . . 5 (𝑐 = 𝐶 → (∀𝑥𝑐𝑗𝐴 𝑥𝐵 ↔ ∀𝑥𝐶𝑗𝐴 𝑥𝐵))
3836feq2d 6702 . . . . . . 7 (𝑐 = 𝐶 → (𝑓:𝑐𝐴𝑓:𝐶𝐴))
3936raleqdv 3321 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑐 𝑥𝐷 ↔ ∀𝑥𝐶 𝑥𝐷))
4038, 39anbi12d 631 . . . . . 6 (𝑐 = 𝐶 → ((𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ (𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4140exbidv 1917 . . . . 5 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4237, 41imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷)) ↔ (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))))
43 vex 3474 . . . . 5 𝑐 ∈ V
44 acunirnmpt2.3 . . . . . 6 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
4544eleq2d 2815 . . . . 5 (𝑗 = (𝑓𝑥) → (𝑥𝐵𝑥𝐷))
4643, 45ac6s 10501 . . . 4 (∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷))
4742, 46vtoclg 3539 . . 3 (𝐶 ∈ V → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4835, 47syl 17 . 2 (𝜑 → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4929, 48mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wne 2936  wral 3057  wrex 3066  Vcvv 3470  c0 4318   cuni 4903  cmpt 5225  ran crn 5673  wf 6538  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-reg 9609  ax-inf2 9658  ax-ac2 10480
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-en 8958  df-r1 9781  df-rank 9782  df-card 9956  df-ac 10133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator