Proof of Theorem absmuls
Step | Hyp | Ref
| Expression |
1 | | mulscl 28027 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 ·s 𝐵) ∈ No
) |
2 | 1 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) → (𝐴 ·s 𝐵) ∈ No
) |
3 | | simplll 774 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 𝐴 ∈ No
) |
4 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 𝐵 ∈ No
) |
5 | | simplr 768 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s
𝐴) |
6 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s
𝐵) |
7 | 3, 4, 5, 6 | mulsge0d 28039 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → 0s ≤s
(𝐴 ·s
𝐵)) |
8 | | abssid 28128 |
. . . . . 6
⊢ (((𝐴 ·s 𝐵) ∈
No ∧ 0s ≤s (𝐴 ·s 𝐵)) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s 𝐵)) |
9 | 2, 7, 8 | syl2an2r 684 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) →
(abss‘(𝐴
·s 𝐵)) =
(𝐴 ·s
𝐵)) |
10 | | abssid 28128 |
. . . . . . 7
⊢ ((𝐵 ∈
No ∧ 0s ≤s 𝐵) → (abss‘𝐵) = 𝐵) |
11 | 10 | ad4ant24 753 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) →
(abss‘𝐵) =
𝐵) |
12 | 11 | oveq2d 7430 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) → (𝐴 ·s
(abss‘𝐵))
= (𝐴 ·s
𝐵)) |
13 | 9, 12 | eqtr4d 2770 |
. . . 4
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 0s ≤s 𝐵) →
(abss‘(𝐴
·s 𝐵)) =
(𝐴 ·s
(abss‘𝐵))) |
14 | | simplll 774 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐴 ∈
No ) |
15 | | simpllr 775 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐵 ∈
No ) |
16 | 14, 15 | mulnegs2d 28054 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s (
-us ‘𝐵)) =
( -us ‘(𝐴
·s 𝐵))) |
17 | | abssnid 28130 |
. . . . . . 7
⊢ ((𝐵 ∈
No ∧ 𝐵 ≤s
0s ) → (abss‘𝐵) = ( -us ‘𝐵)) |
18 | 17 | ad4ant24 753 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) →
(abss‘𝐵) =
( -us ‘𝐵)) |
19 | 18 | oveq2d 7430 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s
(abss‘𝐵))
= (𝐴 ·s (
-us ‘𝐵))) |
20 | | negs0s 27932 |
. . . . . . . 8
⊢ (
-us ‘ 0s ) = 0s |
21 | 15 | negscld 27942 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (
-us ‘𝐵)
∈ No ) |
22 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s
≤s 𝐴) |
23 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 𝐵 ≤s 0s
) |
24 | | 0sno 27752 |
. . . . . . . . . . . . . 14
⊢
0s ∈ No |
25 | 24 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s
∈ No ) |
26 | 15, 25 | slenegd 27953 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐵 ≤s 0s ↔ (
-us ‘ 0s ) ≤s ( -us ‘𝐵))) |
27 | 23, 26 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (
-us ‘ 0s ) ≤s ( -us ‘𝐵)) |
28 | 20, 27 | eqbrtrrid 5178 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s
≤s ( -us ‘𝐵)) |
29 | 14, 21, 22, 28 | mulsge0d 28039 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s
≤s (𝐴
·s ( -us ‘𝐵))) |
30 | 29, 16 | breqtrd 5168 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → 0s
≤s ( -us ‘(𝐴 ·s 𝐵))) |
31 | 20, 30 | eqbrtrid 5177 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (
-us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵))) |
32 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s 𝐵) ∈
No ) |
33 | 32, 25 | slenegd 27953 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → ((𝐴 ·s 𝐵) ≤s 0s ↔ (
-us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵)))) |
34 | 31, 33 | mpbird 257 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) → (𝐴 ·s 𝐵) ≤s 0s
) |
35 | | abssnid 28130 |
. . . . . 6
⊢ (((𝐴 ·s 𝐵) ∈
No ∧ (𝐴
·s 𝐵)
≤s 0s ) → (abss‘(𝐴 ·s 𝐵)) = ( -us ‘(𝐴 ·s 𝐵))) |
36 | 2, 34, 35 | syl2an2r 684 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) →
(abss‘(𝐴
·s 𝐵)) =
( -us ‘(𝐴
·s 𝐵))) |
37 | 16, 19, 36 | 3eqtr4rd 2778 |
. . . 4
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) ∧ 𝐵 ≤s 0s ) →
(abss‘(𝐴
·s 𝐵)) =
(𝐴 ·s
(abss‘𝐵))) |
38 | | sletric 27690 |
. . . . . 6
⊢ ((
0s ∈ No ∧ 𝐵 ∈ No )
→ ( 0s ≤s 𝐵 ∨ 𝐵 ≤s 0s )) |
39 | 24, 38 | mpan 689 |
. . . . 5
⊢ (𝐵 ∈
No → ( 0s ≤s 𝐵 ∨ 𝐵 ≤s 0s )) |
40 | 39 | ad2antlr 726 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) → ( 0s ≤s 𝐵 ∨ 𝐵 ≤s 0s )) |
41 | 13, 37, 40 | mpjaodan 957 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) → (abss‘(𝐴 ·s 𝐵)) = (𝐴 ·s
(abss‘𝐵))) |
42 | | abssid 28128 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) |
43 | 42 | adantlr 714 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) → (abss‘𝐴) = 𝐴) |
44 | 43 | oveq1d 7429 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) → ((abss‘𝐴) ·s
(abss‘𝐵))
= (𝐴 ·s
(abss‘𝐵))) |
45 | 41, 44 | eqtr4d 2770 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 0s ≤s 𝐴) → (abss‘(𝐴 ·s 𝐵)) =
((abss‘𝐴)
·s (abss‘𝐵))) |
46 | | simplll 774 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → 𝐴 ∈
No ) |
47 | | simpllr 775 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → 𝐵 ∈
No ) |
48 | 46, 47 | mulnegs1d 28053 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → ((
-us ‘𝐴)
·s 𝐵) = (
-us ‘(𝐴
·s 𝐵))) |
49 | 10 | ad4ant24 753 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) →
(abss‘𝐵) =
𝐵) |
50 | 49 | oveq2d 7430 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → ((
-us ‘𝐴)
·s (abss‘𝐵)) = (( -us ‘𝐴) ·s 𝐵)) |
51 | 1 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) → (𝐴 ·s 𝐵) ∈
No ) |
52 | 46 | negscld 27942 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → (
-us ‘𝐴)
∈ No ) |
53 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → 𝐴 ≤s 0s
) |
54 | 24 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) →
0s ∈ No ) |
55 | 46, 54 | slenegd 27953 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → (𝐴 ≤s 0s ↔ (
-us ‘ 0s ) ≤s ( -us ‘𝐴))) |
56 | 53, 55 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → (
-us ‘ 0s ) ≤s ( -us ‘𝐴)) |
57 | 20, 56 | eqbrtrrid 5178 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) →
0s ≤s ( -us ‘𝐴)) |
58 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) →
0s ≤s 𝐵) |
59 | 52, 47, 57, 58 | mulsge0d 28039 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) →
0s ≤s (( -us ‘𝐴) ·s 𝐵)) |
60 | 59, 48 | breqtrd 5168 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) →
0s ≤s ( -us ‘(𝐴 ·s 𝐵))) |
61 | 20, 60 | eqbrtrid 5177 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → (
-us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵))) |
62 | 51 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → (𝐴 ·s 𝐵) ∈
No ) |
63 | 62, 54 | slenegd 27953 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → ((𝐴 ·s 𝐵) ≤s 0s ↔ (
-us ‘ 0s ) ≤s ( -us ‘(𝐴 ·s 𝐵)))) |
64 | 61, 63 | mpbird 257 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) → (𝐴 ·s 𝐵) ≤s 0s
) |
65 | 51, 64, 35 | syl2an2r 684 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) →
(abss‘(𝐴
·s 𝐵)) =
( -us ‘(𝐴
·s 𝐵))) |
66 | 48, 50, 65 | 3eqtr4rd 2778 |
. . . 4
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 0s
≤s 𝐵) →
(abss‘(𝐴
·s 𝐵)) =
(( -us ‘𝐴)
·s (abss‘𝐵))) |
67 | | simplll 774 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
𝐴 ∈ No ) |
68 | | simpllr 775 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
𝐵 ∈ No ) |
69 | 67, 68 | mul2negsd 28055 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ((
-us ‘𝐴)
·s ( -us ‘𝐵)) = (𝐴 ·s 𝐵)) |
70 | 17 | ad4ant24 753 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
(abss‘𝐵) =
( -us ‘𝐵)) |
71 | 70 | oveq2d 7430 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → ((
-us ‘𝐴)
·s (abss‘𝐵)) = (( -us ‘𝐴) ·s (
-us ‘𝐵))) |
72 | 67 | negscld 27942 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (
-us ‘𝐴)
∈ No ) |
73 | 68 | negscld 27942 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (
-us ‘𝐵)
∈ No ) |
74 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
𝐴 ≤s 0s
) |
75 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
0s ∈ No ) |
76 | 67, 75 | slenegd 27953 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
(𝐴 ≤s 0s
↔ ( -us ‘ 0s ) ≤s ( -us
‘𝐴))) |
77 | 74, 76 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (
-us ‘ 0s ) ≤s ( -us ‘𝐴)) |
78 | 20, 77 | eqbrtrrid 5178 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
0s ≤s ( -us ‘𝐴)) |
79 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
𝐵 ≤s 0s
) |
80 | 68, 75 | slenegd 27953 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
(𝐵 ≤s 0s
↔ ( -us ‘ 0s ) ≤s ( -us
‘𝐵))) |
81 | 79, 80 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) → (
-us ‘ 0s ) ≤s ( -us ‘𝐵)) |
82 | 20, 81 | eqbrtrrid 5178 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
0s ≤s ( -us ‘𝐵)) |
83 | 72, 73, 78, 82 | mulsge0d 28039 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
0s ≤s (( -us ‘𝐴) ·s ( -us
‘𝐵))) |
84 | 83, 69 | breqtrd 5168 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
0s ≤s (𝐴
·s 𝐵)) |
85 | 51, 84, 8 | syl2an2r 684 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
(abss‘(𝐴
·s 𝐵)) =
(𝐴 ·s
𝐵)) |
86 | 69, 71, 85 | 3eqtr4rd 2778 |
. . . 4
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) ∧ 𝐵 ≤s 0s ) →
(abss‘(𝐴
·s 𝐵)) =
(( -us ‘𝐴)
·s (abss‘𝐵))) |
87 | 39 | ad2antlr 726 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) → (
0s ≤s 𝐵 ∨
𝐵 ≤s 0s
)) |
88 | 66, 86, 87 | mpjaodan 957 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) →
(abss‘(𝐴
·s 𝐵)) =
(( -us ‘𝐴)
·s (abss‘𝐵))) |
89 | | abssnid 28130 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝐴 ≤s
0s ) → (abss‘𝐴) = ( -us ‘𝐴)) |
90 | 89 | oveq1d 7429 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐴 ≤s
0s ) → ((abss‘𝐴) ·s
(abss‘𝐵))
= (( -us ‘𝐴) ·s
(abss‘𝐵))) |
91 | 90 | adantlr 714 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) →
((abss‘𝐴)
·s (abss‘𝐵)) = (( -us ‘𝐴) ·s
(abss‘𝐵))) |
92 | 88, 91 | eqtr4d 2770 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 ≤s 0s ) →
(abss‘(𝐴
·s 𝐵)) =
((abss‘𝐴)
·s (abss‘𝐵))) |
93 | | sletric 27690 |
. . . 4
⊢ ((
0s ∈ No ∧ 𝐴 ∈ No )
→ ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
94 | 24, 93 | mpan 689 |
. . 3
⊢ (𝐴 ∈
No → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
95 | 94 | adantr 480 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → ( 0s ≤s 𝐴 ∨ 𝐴 ≤s 0s )) |
96 | 45, 92, 95 | mpjaodan 957 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (abss‘(𝐴 ·s 𝐵)) =
((abss‘𝐴)
·s (abss‘𝐵))) |