MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexexg Structured version   Visualization version   GIF version

Theorem abrexexg 7968
Description: Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5295, axrep6 5294, ax-rep 5287. See also abrexex2g 7972. There are partial converses under additional conditions, see for instance abnexg 7762. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2129, ax-11 2146, ax-12 2166, ax-pr 5431, ax-un 7744 and shorten proof. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
abrexexg (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abrexexg
StepHypRef Expression
1 moeq 3702 . . 3 ∃*𝑦 𝑦 = 𝐵
21ax-gen 1789 . 2 𝑥∃*𝑦 𝑦 = 𝐵
3 axrep6g 5295 . 2 ((𝐴𝑉 ∧ ∀𝑥∃*𝑦 𝑦 = 𝐵) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
42, 3mpan2 689 1 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531   = wceq 1533  wcel 2098  ∃*wmo 2527  {cab 2704  wrex 3066  Vcvv 3471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698  ax-rep 5287
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-mo 2529  df-clab 2705  df-cleq 2719  df-clel 2805  df-rex 3067  df-v 3473
This theorem is referenced by:  abrexex  7970  iunexg  7971  qsexg  8798  wdomd  9610  cardiun  10011  rankcf  10806  sigaclci  33756  satf0suclem  34990  hbtlem1  42550  hbtlem7  42552  setpreimafvex  46725  fundcmpsurinj  46751  fundcmpsurbijinj  46752
  Copyright terms: Public domain W3C validator