Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpunirn Structured version   Visualization version   GIF version

Theorem abfmpunirn 32421
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.)
Hypotheses
Ref Expression
abfmpunirn.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
abfmpunirn.2 {𝑦𝜑} ∈ V
abfmpunirn.3 (𝑦 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
abfmpunirn (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)

Proof of Theorem abfmpunirn
StepHypRef Expression
1 elex 3488 . 2 (𝐵 ran 𝐹𝐵 ∈ V)
2 abfmpunirn.2 . . . . . 6 {𝑦𝜑} ∈ V
3 abfmpunirn.1 . . . . . 6 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
42, 3fnmpti 6692 . . . . 5 𝐹 Fn 𝑉
5 fnunirn 7258 . . . . 5 (𝐹 Fn 𝑉 → (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ (𝐹𝑥)))
64, 5ax-mp 5 . . . 4 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ (𝐹𝑥))
73fvmpt2 7010 . . . . . . 7 ((𝑥𝑉 ∧ {𝑦𝜑} ∈ V) → (𝐹𝑥) = {𝑦𝜑})
82, 7mpan2 690 . . . . . 6 (𝑥𝑉 → (𝐹𝑥) = {𝑦𝜑})
98eleq2d 2814 . . . . 5 (𝑥𝑉 → (𝐵 ∈ (𝐹𝑥) ↔ 𝐵 ∈ {𝑦𝜑}))
109rexbiia 3087 . . . 4 (∃𝑥𝑉 𝐵 ∈ (𝐹𝑥) ↔ ∃𝑥𝑉 𝐵 ∈ {𝑦𝜑})
116, 10bitri 275 . . 3 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ {𝑦𝜑})
12 abfmpunirn.3 . . . . 5 (𝑦 = 𝐵 → (𝜑𝜓))
1312elabg 3663 . . . 4 (𝐵 ∈ V → (𝐵 ∈ {𝑦𝜑} ↔ 𝜓))
1413rexbidv 3173 . . 3 (𝐵 ∈ V → (∃𝑥𝑉 𝐵 ∈ {𝑦𝜑} ↔ ∃𝑥𝑉 𝜓))
1511, 14bitrid 283 . 2 (𝐵 ∈ V → (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝜓))
161, 15biadanii 821 1 (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {cab 2704  wrex 3065  Vcvv 3469   cuni 4903  cmpt 5225  ran crn 5673   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by:  rabfmpunirn  32422  isrnsiga  33668  isrnmeas  33755
  Copyright terms: Public domain W3C validator