![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3brtr4i | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
Ref | Expression |
---|---|
3brtr4.1 | ⊢ 𝐴𝑅𝐵 |
3brtr4.2 | ⊢ 𝐶 = 𝐴 |
3brtr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4i | ⊢ 𝐶𝑅𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3brtr4.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
3 | 1, 2 | eqbrtri 5169 | . 2 ⊢ 𝐶𝑅𝐵 |
4 | 3brtr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | breqtrri 5175 | 1 ⊢ 𝐶𝑅𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 |
This theorem is referenced by: 1lt2nq 10997 0lt1sr 11119 declt 12736 decltc 12737 decle 12742 fzennn 13966 faclbnd4lem1 14285 fsumabs 15780 basendxltplusgndx 17262 basendxlttsetndx 17336 basendxltplendx 17350 basendxltdsndx 17369 basendxltunifndx 17379 ovolfiniun 25443 log2ublem3 26893 log2ub 26894 bclbnd 27226 bposlem8 27237 basendxltedgfndx 28819 baseltedgfOLD 28820 nmblolbii 30622 normlem6 30938 norm-ii-i 30960 nmbdoplbi 31847 dp2lt 32621 dp2ltsuc 32622 dp2ltc 32623 dplt 32640 dpltc 32643 dpmul4 32650 hgt750lemd 34280 hgt750lem 34283 supxrltinfxr 44831 nnsum4primesevenALTV 47141 |
Copyright terms: Public domain | W3C validator |