MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralsng Structured version   Visualization version   GIF version

Theorem 2ralsng 4676
Description: Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
2ralsng.1 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
2ralsng ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑𝜒))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥   𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem 2ralsng
StepHypRef Expression
1 ralsng.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21ralbidv 3172 . . 3 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝐵}𝜑 ↔ ∀𝑦 ∈ {𝐵}𝜓))
32ralsng 4673 . 2 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑 ↔ ∀𝑦 ∈ {𝐵}𝜓))
4 2ralsng.1 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
54ralsng 4673 . 2 (𝐵𝑊 → (∀𝑦 ∈ {𝐵}𝜓𝜒))
63, 5sylan9bb 509 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  {csn 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-v 3471  df-sn 4625
This theorem is referenced by:  c0snmgmhm  20394  zrrnghm  20466  mat1ghm  22378  mat1mhm  22379  f1resfz0f1d  34713
  Copyright terms: Public domain W3C validator