![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2onn | Structured version Visualization version GIF version |
Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un 7744, see 2onnALT 8668. (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7744. (Revised by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
2onn | ⊢ 2o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2on 8505 | . 2 ⊢ 2o ∈ On | |
2 | 2ellim 8524 | . . 3 ⊢ (Lim 𝑥 → 2o ∈ 𝑥) | |
3 | 2 | ax-gen 1789 | . 2 ⊢ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥) |
4 | elom 7877 | . 2 ⊢ (2o ∈ ω ↔ (2o ∈ On ∧ ∀𝑥(Lim 𝑥 → 2o ∈ 𝑥))) | |
5 | 1, 3, 4 | mpbir2an 709 | 1 ⊢ 2o ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 ∈ wcel 2098 Oncon0 6372 Lim wlim 6373 ωcom 7874 2oc2o 8485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-tr 5268 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-om 7875 df-1o 8491 df-2o 8492 |
This theorem is referenced by: 3onn 8669 nn2m 8679 nnneo 8680 nneob 8681 omopthlem1 8684 omopthlem2 8685 pwen 9179 en2eqpr 10036 en2eleq 10037 unctb 10234 infdjuabs 10235 ackbij1lem5 10253 sdom2en01 10331 fin56 10422 fin67 10424 fin1a2lem4 10432 alephexp1 10608 pwcfsdom 10612 alephom 10614 canthp1lem2 10682 pwxpndom2 10694 hash3 14403 hash2pr 14468 pr2pwpr 14478 rpnnen 16209 rexpen 16210 xpsfrnel 17549 xpscf 17552 symggen 19430 psgnunilem1 19453 simpgnsgd 20062 znfld 21499 hauspwdom 23423 xpsmet 24306 xpsxms 24461 xpsms 24462 unidifsnel 32349 unidifsnne 32350 sat1el2xp 34994 ex-sategoelelomsuc 35041 ex-sategoelel12 35042 1oequni2o 36852 finxpreclem4 36878 finxp3o 36884 wepwso 42470 frlmpwfi 42525 2omomeqom 42735 oenord1ex 42747 oaomoencom 42749 2finon 42883 har2o 42979 |
Copyright terms: Public domain | W3C validator |