![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lt3 | Structured version Visualization version GIF version |
Description: 2 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
2lt3 | ⊢ 2 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12317 | . . 3 ⊢ 2 ∈ ℝ | |
2 | 1 | ltp1i 12149 | . 2 ⊢ 2 < (2 + 1) |
3 | df-3 12307 | . 2 ⊢ 3 = (2 + 1) | |
4 | 2, 3 | breqtrri 5175 | 1 ⊢ 2 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5148 (class class class)co 7420 1c1 11140 + caddc 11142 < clt 11279 2c2 12298 3c3 12299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-2 12306 df-3 12307 |
This theorem is referenced by: 1lt3 12416 2lt4 12418 2lt6 12427 2lt7 12433 2lt8 12440 2lt9 12448 3halfnz 12672 2lt10 12846 uzuzle23 12904 uz3m2nn 12906 fztpval 13596 expnass 14204 s4fv2 14881 f1oun2prg 14901 caucvgrlem 15652 cos01gt0 16168 3lcm2e6 16704 5prm 17078 11prm 17084 17prm 17086 23prm 17088 83prm 17092 317prm 17095 4001lem4 17113 plusgndxnmulrndx 17278 rngstr 17279 slotsdifunifndx 17382 oppraddOLD 20283 cnfldstr 21281 cnfldstrOLD 21296 cnfldfunALTOLDOLD 21308 2logb9irr 26740 2logb3irr 26742 log2le1 26895 chtub 27158 bpos1 27229 bposlem6 27235 chto1ub 27422 dchrvmasumiflem1 27447 istrkg3ld 28278 tgcgr4 28348 axlowdimlem2 28767 axlowdimlem16 28781 axlowdimlem17 28782 axlowdim 28785 usgrexmpldifpr 29084 upgr3v3e3cycl 30003 konigsbergiedgw 30071 konigsberglem1 30075 konigsberglem2 30076 konigsberglem3 30077 ex-pss 30251 ex-res 30264 ex-fv 30266 ex-fl 30270 ex-mod 30272 prodfzo03 34235 cnndvlem1 36012 poimirlem9 37102 3lexlogpow2ineq1 41529 aks4d1p1p6 41544 aks4d1p1p5 41546 2ap1caineq 41617 rabren3dioph 42235 jm2.20nn 42418 mnringaddgdOLD 43655 wallispilem4 45456 fourierdlem87 45581 smfmullem4 46182 257prm 46901 31prm 46937 9fppr8 47077 fpprel2 47081 nnsum3primes4 47128 nnsum3primesgbe 47132 nnsum3primesle9 47134 nnsum4primesodd 47136 nnsum4primesoddALTV 47137 tgoldbach 47157 zlmodzxznm 47565 zlmodzxzldeplem 47566 sepfsepc 47946 |
Copyright terms: Public domain | W3C validator |