![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1t1e1 | Structured version Visualization version GIF version |
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1t1e1 | ⊢ (1 · 1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11190 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | mulridi 11242 | 1 ⊢ (1 · 1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7414 1c1 11133 · cmul 11137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-mulcl 11194 ax-mulcom 11196 ax-mulass 11198 ax-distr 11199 ax-1rid 11202 ax-cnre 11205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: neg1mulneg1e1 12449 addltmul 12472 1exp 14082 expge1 14090 mulexp 14092 mulexpz 14093 expaddz 14097 m1expeven 14100 sqrecii 14172 i4 14193 facp1 14263 hashf1 14444 binom 15802 prodf1 15863 prodfrec 15867 fprodmul 15930 fprodge1 15965 fallfac0 15998 binomfallfac 16011 pwp1fsum 16361 rpmul 16623 2503lem2 17100 2503lem3 17101 4001lem4 17106 abvtrivd 20713 pzriprng1ALT 21415 iimulcl 24853 dvexp 25878 dvef 25905 mulcxplem 26611 cxpmul2 26616 dvsqrt 26669 dvcnsqrt 26671 abscxpbnd 26681 1cubr 26767 dchrmulcl 27175 dchr1cl 27177 dchrinvcl 27179 lgslem3 27225 lgsval2lem 27233 lgsneg 27247 lgsdilem 27250 lgsdir 27258 lgsdi 27260 lgsquad2lem1 27310 lgsquad2lem2 27311 dchrisum0flblem2 27435 rpvmasum2 27438 mudivsum 27456 pntibndlem2 27517 axlowdimlem6 28751 hisubcomi 30907 lnophmlem2 31820 1nei 32512 1neg1t1neg1 32513 sgnmul 34152 hgt750lem2 34274 subfacval2 34787 faclim2 35332 knoppndvlem18 35994 lcmineqlem12 41500 pell1234qrmulcl 42247 pellqrex 42271 imsqrtvalex 43048 binomcxplemnotnn0 43765 dvnprodlem3 45308 stoweidlem13 45373 stoweidlem16 45376 wallispi 45430 wallispi2lem2 45432 2exp340mod341 47045 8exp8mod9 47048 nn0sumshdiglemB 47665 |
Copyright terms: Public domain | W3C validator |