![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nep0 | Structured version Visualization version GIF version |
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
0nep0 | ⊢ ∅ ≠ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5302 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snnz 4777 | . 2 ⊢ {∅} ≠ ∅ |
3 | 2 | necomi 2991 | 1 ⊢ ∅ ≠ {∅} |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2936 ∅c0 4319 {csn 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5301 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-v 3472 df-dif 3948 df-nul 4320 df-sn 4626 |
This theorem is referenced by: 0inp0 5354 opthprc 5737 2dom 9049 pw2eng 9097 djuexb 9927 hashge3el3dif 14474 cat1 18080 isusp 24160 bj-1upln0 36483 clsk1indlem0 43462 mnuprdlem1 43700 mnuprdlem2 43701 |
Copyright terms: Public domain | W3C validator |