![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cyg | Structured version Visualization version GIF version |
Description: The trivial group is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cygctb.1 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
0cyg | ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2728 | . 2 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
3 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ Grp) | |
4 | eqid 2728 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | 1, 4 | grpidcl 18916 | . . 3 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (0g‘𝐺) ∈ 𝐵) |
7 | 0z 12594 | . . 3 ⊢ 0 ∈ ℤ | |
8 | en1eqsn 9293 | . . . . . . . 8 ⊢ (((0g‘𝐺) ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {(0g‘𝐺)}) | |
9 | 5, 8 | sylan 579 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐵 = {(0g‘𝐺)}) |
10 | 9 | eleq2d 2815 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ {(0g‘𝐺)})) |
11 | 10 | biimpa 476 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ {(0g‘𝐺)}) |
12 | velsn 4641 | . . . . 5 ⊢ (𝑥 ∈ {(0g‘𝐺)} ↔ 𝑥 = (0g‘𝐺)) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 = (0g‘𝐺)) |
14 | 1, 4, 2 | mulg0 19024 | . . . . . 6 ⊢ ((0g‘𝐺) ∈ 𝐵 → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
15 | 6, 14 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → (0(.g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
17 | 13, 16 | eqtr4d 2771 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → 𝑥 = (0(.g‘𝐺)(0g‘𝐺))) |
18 | oveq1 7422 | . . . 4 ⊢ (𝑛 = 0 → (𝑛(.g‘𝐺)(0g‘𝐺)) = (0(.g‘𝐺)(0g‘𝐺))) | |
19 | 18 | rspceeqv 3630 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑥 = (0(.g‘𝐺)(0g‘𝐺))) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g‘𝐺)(0g‘𝐺))) |
20 | 7, 17, 19 | sylancr 586 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) ∧ 𝑥 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑥 = (𝑛(.g‘𝐺)(0g‘𝐺))) |
21 | 1, 2, 3, 6, 20 | iscygd 19836 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ≈ 1o) → 𝐺 ∈ CycGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 {csn 4625 class class class wbr 5143 ‘cfv 6543 (class class class)co 7415 1oc1o 8474 ≈ cen 8955 0cc0 11133 ℤcz 12583 Basecbs 17174 0gc0g 17415 Grpcgrp 18884 .gcmg 19017 CycGrpccyg 19826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-seq 13994 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-minusg 18888 df-mulg 19018 df-cyg 19827 |
This theorem is referenced by: lt6abl 19844 frgpcyg 21501 |
Copyright terms: Public domain | W3C validator |